In-line sub-surface seeding, fertilizing and watering device

Planting – Liquid or gas soil treatment – Drilling machines

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C111S188000, C111S129000, C111S073000, C111S080000, C111S187000

Reexamination Certificate

active

06302040

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the field of opening blades which may be partially submerged into earth, for example in a farmers field, so as to pass the blade at a submerged depth for delivery of seeds, fertilizer or water into the earth.
BACKGROUND OF THE INVENTION
It is known that the use of plows or other devices having for example tillage discs for tilling the earth or otherwise opening and turning a furrow through the ground suffer from the disadvantage that the moisture in the soil is unnecessarily exposed to evaporation. However, it is necessary to open the earth so that the ground beneath the surface may be seeded, fertilized and watered. In the prior art, whether this was accomplished by machinery or done manually, prior art machines or manual systems also suffered from the disadvantage that fertilizer may have been delivered into close proximity to the seeds being sown occasionally resulting in the seeds becoming chemically burnt.
SUMMARY OF THE INVENTION
In summary, the sub-surface seeding, fertilizing and watering device of the present invention includes an opening blade having first and second sides extending between a leading edge and an aft edge. The first and second sides may be advantageously generally symmetrical to each other on either side of a first plane, where the first plane generally bisects the opening blade. The leading edge and the aft edge may lie generally in the first plane.
The opening blade has an upper surface and a lower surface extending between upper and lower edges respectively of the first and second sides of the blade. First and second wings are mounted to the first and second sides respectively in generally oppositely disposed relation so as to be cantilevered outwardly therefrom. The first and second wings extend between first and second forward wing edges and first and second aft-opening wing apertures in the first and second wings respectively. The first and second wings are mounted to the first and second sides at, respectively, first and second distances from the lower surface measured generally parallel to the first plane.
A pair of oppositely disposed, rigid canards is mounted to the first and second sides, so as to extend cantilevered outwardly therefrom. The canards may be mounted between the leading edge and the first and second forward wing edges. The pair of oppositely disposed rigid canards are mounted to said first and second sides at, respectively, third and fourth distances from said lower surface measured generally parallel to said first plane. The third and fourth distances may be equal distances.
The opening blade has therethrough, and generally lying in the first plane, first and second conduits, extending from, and cooperating with, at uppermost ends thereof, first and second infeed ports in the upper surface. The first and second conduits cooperate with, at lowermost ends thereof, the first and second aft opening wing apertures. The first and second conduits are thereby in material flow communication between the first and second infeed ports and the corresponding first and second aft opening wing apertures for seed, fertilizer or fluid flow, as fed from a material feeder, therethrough during the forward translation of the blade.
The opening blade is mountable to the material feeder so as to be generally vertically disposed, when mounted thereon, for partial submerging into soil to a first submerged depth advancing the leading edge through the soil. The first, second, third and fourth distances are less than the first submerged depth so that the first and second wings and the pair of canards are submerged in the soil during the forward translation of the blade.
In one embodiment, the opening blade may further include a third conduit extending in material flow communication between a third infeed port in the upper surface and an aft opening blade aperture in a rearward position on the opening blade in proximity to the aft edge for seed, fertilizer or fluid flow therethrough, as fed from the material feeder. The aft-opening blade aperture may be centrally disposed relative to the first plane so as to lie generally symmetrically across the first plane, and may be positioned so that the aperture intersects the lower surface of the blade. Thus the aft-opening blade aperture may be formed generally at the intersection of the lower surface and the aft edge of the blade. The aft-opening blade aperture may lie in a second plane at generally 30° inclined relative to a third plane generally containing the lower surface of the blade, wherein the third plane is generally orthogonal to the first plane.
The first, second and third conduits may be generally parallel and, at least in part, raked aft of their corresponding first, second and third infeed ports. The first, second and third conduits may be, at least in part, raked aft at an angle of approximately 55° relative to a fourth plane generally containing the upper surface of the blade if the upper surface is a planar generally horizontal surface, although this is not necessarily so.
In a further aspect of the invention, the leading edge is concavely curved and forms a toe, which may be pointed, at the intersection of the leading edge and the lower surface of the blade. The pointed toe may be made of hardened material relative to the hardness of material forming the balance of the opening blade.
The first and second wings and the canards may be wedge-shaped and the forward wing and canard edges may be vertices of the wedge-shapes.
The first wing may be defined as being set back a first longitudinal distance from the leading edge and the second wing as being set back a second longitudinal distance from the leading edge. Thus, in another aspect of this invention, the first longitudinal distance may be greater than the second longitudinal distance.
In yet a further aspect of the present invention, in the wing design, upper wing surfaces on the first and second wings may extend aft over the corresponding first and second aft-opening wing apertures for example on aft cantilevered upper wing members. The lower wing surface on the first and second wings may form a first wedge angle of approximately 5° with the upper wing surface. Further, laterally outer-most wing surfaces extend between the upper and lower wing surfaces. The laterally outer-most wing surfaces may advantageously intersect the corresponding first and second sides of the blade at their corresponding first and second forward wing edges. Thus the laterally outer-most wing surfaces may form a second wedge angle relative to the first and second sides of the blade respectively.


REFERENCES:
patent: 4275671 (1981-06-01), Baker
patent: 4388878 (1983-06-01), Demzin
patent: 4638748 (1987-01-01), Kopecky
patent: 4653412 (1987-03-01), Clarke
patent: 4770112 (1988-09-01), Neumeyer
patent: 5269237 (1993-12-01), Baker
patent: 1211992 (1986-09-01), None
patent: 2 045 313 (1971-02-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

In-line sub-surface seeding, fertilizing and watering device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with In-line sub-surface seeding, fertilizing and watering device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and In-line sub-surface seeding, fertilizing and watering device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2589261

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.