Land vehicles – Skates – Wheeled skate
Utility Patent
1996-06-21
2001-01-02
Boehler, Anne Marie (Department: 3611)
Land vehicles
Skates
Wheeled skate
C036S089000, C036S115000
Utility Patent
active
06168172
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to in-line roller skate constructions and, more particularly, to pivoting ankle support structures for in-line roller skates.
BACKGROUND OF THE INVENTION
In-line roller skates typically include a plurality of aligned wheels with parallel axles secured to a skate frame. A skate boot or shoe is attached to the top of the frame. Most skate manufacturers currently construct the boots and shoes (the “skate upper”) with a base, a plastic shell extending upwardly from the base, and a removable liner. The shell may include a cuff portion pivotally attached to a lower portion of the shell to ease fore and aft movement of the skater's leg while providing medial and lateral support. Alternatively the plastic shell may extend upwardly to the top of the skate above the ankle without the cuff being pivotally secured to the lower portion. Rigid hockey skates are also in the prior art. These skates typically do not have a plastic outer shell. Hockey skates may have a leather or leather
ylon outer shell with internal stiffening/support members. While hockey skate constructions provide necessary support for this sport they do not easily flex forwardly and rearwardly.
Most in-line roller skates are very maneuverable and are capable of higher speeds than those customarily associated with conventional paired wheel roller skates. In-line roller skating is generally considered to require higher levels of skill, coordination, and strength than conventional paired wheel roller skating because of the narrow, lateral support base associated with in-line roller skates. Specifically, while balancing in the forward and rear direction is relatively easy for even inexperienced skaters, balancing in the sideward or lateral direction is difficult because of the narrow support base and is heavily dependent upon the skater's balancing and coordination skills. Proper ankle and foot supports within the upper shoe portion of the in-line roller skate aid in lateral balancing.
To obtain the optimum performance from an in-line roller skate, it is important that the in-line roller skate be maintained in a substantially vertical position. The upper shoe portion of the in-line roller skate serves competing purposes of providing support and comfort; comfort in a shoe not usually being associated with a high degree of support. In other words, the incorporation of rigid support structures in the upper shoe portion of the in-line roller skate tends to add stiffness and bulk and, considering the warm weather environments conducive to in-line roller skating, tends to make the skates, heavy, hot, and uncomfortable. Because serious ankle and other injuries can result if comfort is favored over support, proper support in an in-line roller skate has been the dominant design criteria in the past.
As discussed briefly above, the conventional upper shoe portion of the in-line roller skate is usually formed of rigid, non-breathable, plastic materials having an inner liner. The plastic material generally forms the outer structure of the upper shoe portion, thereby requiring that a soft inner liner of sponge rubber or other like material be included to provide comfort to the user. Since such soft materials combined with the rigid plastic shell are good insulators and do not readily transmit heat or air away from the user's foot, the result is a hot upper shoe portion.
To provide lateral stability, conventional alpine ski boot designs have readily been adapted to in-line roller skates. These boots provide support and durability, characteristics necessary for in-line roller skates. U.S. Pat. Nos. 4,351,537 and 5,171,033 are both exemplary of rigid injection molded boots adapted to winter sports, such as ice skating and alpine skiing, which have been modified for in-line roller skating applications. These patents disclose an upper boot portion that comprises a hard plastic outer shell with a soft inner liner. While this type of boot design is well-suited for cold weather sports, the upper shoe portion tends to be hot and uncomfortable when used in warm weather sports such as in-line roller skating. The '033 patent suggests that by including “primarily unobstructed ventilation ports” in the rigid synthetic outer shell of the upper shoe portion, air can circulate around the skater's foot, thereby eliminating some of the heat associated with the hard plastic outer shell. While this patent seeks to address the issue of comfort, the disclosed upper shoe portion is still configured of two parts, including a hard plastic outer shell and a soft inner liner, which in warm weather conditions can be uncomfortable, compared to conventional walking and/or running shoes due to excessive heat buildup. The result is that the skater's feet are often hot, damp, and uncomfortable.
Another problem with the adoption of injection molded ski-type boots to in-line roller skating is that while providing excellent lateral stiffness and rigidity for lateral ankle support, these boots also create unnecessary and unwanted forward/rearward stiffness and rigidity. Ski-type boots detract from the performance characteristics of the skate because they limit the range of motion of the skater's legs and feet and therefore, the ability of the skater to utilize the full extent of his strength and agility.
Further, it is desirable for an in-line roller skate upper shoe portion to be lightweight. Boots that are well-suited to skiing applications wherein it is not necessary to raise and lower the boot with every movement of the foot (because the skier relies on gravity to provide the forward or downward motion) prove heavy and bulky when adapted to in-line roller skating. When skating on a flat surface, the in-line roller skater must lift the boot with every stride to provide a forward impetus, and a heavy upper shoe portion causes fatigue and reduces skating enjoyment.
Alternative modes of providing both comfort and adequate support for in-line roller skating have been suggested. Specifically, U.S. Pat. Nos. 3,963,252, 4,418,929, and 5,069,462 show roller skate frames that include a platform adapted to allow the skater to wear a conventional street shoe that is inserted into a series of braces and supports. These skates offer alternative shoe and frame designs to the rigid plastic outer shell and inner liner of the conventional in-line roller skate.
However, significant problems exist with such designs in that the adjustable braces and supports of these designs, while needed to accommodate numerous shoe sizes and shapes, are bulky and uncomfortable. Additionally, there is a limited range of shoe types that the skates will accommodate, and thus, there is the additional requirement that the skater have the proper shoe type to properly utilize the skate.
The outer plastic shells of previous in-line roller skates have created difficulty in styling the skates such as has been done with hiking boots and other footwear that have not had rigid outer shells. However, the rigid outer shells have thought to be necessary to provide adequate medial and lateral support while allowing ease of fore and aft movement of the leg of the skater relative to the skater's foot during skating. A recreational skater may not have the required strength and ability to utilize a low-cut skate which provides ease of movement. The skate would not provide enough lateral and medial support. Skates that do provide lateral and medial support and that do not include the rigid plastic outer shell construction include hockey skates. Hockey skates do provide adequate, lateral and medial support for the skater's ankle. However, fore and aft movement of the lower leg of the skater relative to the skater's foot is also limited. The hockey skate uppers are generally quite rigid and unforgiving. Therefore, a need exists to provide a skate that includes an upper structural support member for medial and lateral support while providing for ease of fore and aft movement without totally encompassing the skaters foot in a rig
Meibock Antonin A.
Svensson John E.
Boehler Anne Marie
Christensen O'Connor Johnson & Kindness PLLC
K-2 Corporation
LandOfFree
In-line roller skate does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with In-line roller skate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and In-line roller skate will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2526819