Incremental printing of symbolic information – Ink jet – Ejector mechanism
Reexamination Certificate
2000-11-20
2001-11-20
Vo, Anh T. N. (Department: 2861)
Incremental printing of symbolic information
Ink jet
Ejector mechanism
C400S082000
Reexamination Certificate
active
06318840
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to in-line printers and deals more specifically with an in-line printer having automatic positioning multiple microprocessor controlled print heads.
BACKGROUND OF THE INVENTION
In-line configured printers are important because they minimize the length (along the substrate or printing medium) of the print zone, and thereby minimize the overall envelope of the printing machine. Accommodating a longer print zone expands the overall printing machine envelope which is critical to cost, weight, installation space, inventory and shipping. In-line printers, particularly in-line printers for printing indicia, return address, destination address and/or destination barcode together with optional message line and/or destination barcode on a substrate such as a mail piece, use multiple spaced assemblies of print heads to carry out the required printing.
The positioning of the print head assemblies in such in-line printers is typically accomplished by manual movement of the assemblies with respect to one another in those in-line printers that have movable print head assemblies and after such manual location are then locked in a fixed location. The position of the various areas of information to be printed are located relative to one another with variable spacing depending upon the width of the printing medium material, such as, for example, a print stock postal card, an envelope such as a #10 business envelope, a 9″×12″ flat mailing envelope or custom-sized envelope, to be printed. In such in-line printers, a first multiple print head assembly is located to print in a fixed print area of the substrate as the substrate passes relative to the print head. The first multiple print head assembly may be aligned and located to print in a fixed print area that, for example, may be in the print area that includes the return address or other indicia information. A second multiple print head assembly is located relative to the first print head assembly and positioned to print in a second print area, which may include, for example, the destination address and/or destination barcode. A third multiple print head assembly is located and positioned relative to the second and first multiple print head assemblies and located to print in a third print area, which may include, for example, a message line or optional barcode. The location of the first, second and third print areas on a mail piece are within predetermined areas of the mail piece and are typically specified by United States Postal Service standards to accommodate mechanized mail processing for each of the differently sized mail pieces. When a user desires to print with an in-line printer on a differently sized substrate or mail piece, the print head assemblies must be repositioned and located and locked in a different position to meet the location print area requirements for the size of the mail piece being printed.
In-line printers such as those described above require operator intervention to relocate and reposition the multiple print heads each and every time a differently sized mail piece is printed. The operation and set-up of such in-line printers is labor intensive and cumbersome and less than satisfactory. In addition, the continual resetting and repositioning of the print head assemblies relative to one another may lead to positional error and requires constant verification that the print head assemblies are positioned and located properly to meet the addressing standards for the given size mail piece.
Accordingly, it would be desirable to provide an in-line printer having multiple print head assemblies that are individually controllable and automatically positionable and movable relative to one another to accommodate different width substrates to print on each of the desired print areas as the substrate and print head assemblies move relative to one another to print in each of the predetermined print areas of a mail piece.
It is an additional object of the present invention to provide an in-line printer that automatically determines the dimension of the mail piece as it is fed into the printer for controlling the print position of the assembly of print heads.
SUMMARY OF THE INVENTION
The present invention substantially obviates, if not entirely eliminates, the disadvantages and shortcomings of in-line printers having multiple spaced-apart print head assemblies that require positioning relative to one another to print in predetermined print areas on a substrate such as a mail piece. The invention accomplishes this by providing an in-line printer having automatic positioning multiple microprocessor controlled print head assemblies to properly cover the width of the substrate.
The in-line printer comprises: means for registering one edge of the substrate; a plurality of automatic, positional print heads assemblies, each assembly including at least one print head; and a microprocessor-based controller for determining a print position for each one of the print heads.
Additionally, the printer comprises: a first moving mechanism capable of moving the substrate towards the print head assemblies along a feed path in a feed direction substantially perpendicular to the width of the substrate; one or more motor controller assemblies for directing each one of the print head assemblies to its associated print position in order to simultaneously place the print head assemblies over a distance relative to the substrate edge registering means; means for coupling the print head assemblies to the motor controller assemblies for moving the print head assemblies relative to each other in a moving direction substantially parallel to the width of the substrate; auto-sensing means for determining a dimension of the substrate as the substrate is fed into the printer; and a set of pre-determined criteria by which the microprocessor-based controller determines the print position for each of the print head assemblies.
Preferably, the in-line printer further comprises a fence for guiding the substrate along the feedpath wherein the fence is capable of adjusting a width of the feedpath according to the width of the substrate, and
encoder means coupled to the adjustable substrate material fence for determining a position of the adjustable substrate material fence as the fence moves over a distance relative to the substrate edge registering means whereby the width of the substrate corresponds to the distance between the substrate edge registering means and the fence.
Further, a preferred embodiment of the in-line printer further comprises a fixed wall at one side of the substrate feed path substantially opposite the other side of the width of the feed path defined by the position of the adjustable substrate material fence for registering the edge of the substrate. The in-line printer further comprises a plurality of guide rails oriented in a direction substantially parallel to the width of the substrate for slidably mounting the print head assemblies so as to allow the print head assemblies to move relative to each other along the moving direction. Additionally, the in-line printer comprises at least one guide rail oriented in a direction substantially parallel to the width of the substrate for slidably mounting the adjustable substrate material fence so as to allow the fence to move toward and away from the fixed wall.
Preferably, each of the print head assemblies has a home position located on one side of the in-line printer remotely from the printing position across the width of the substrate.
A second aspect of the present invention is a method of in-line printing for printing on a substrate material within a plurality of printing bands, wherein the printing bands are distributed in a predetermined manner over the width of the substrate. The method comprises several steps which include: registering one edge of the substrate; feeding the substrate material from a feed area into a print area along a feed direction substantially perpendicular to the width; and providing a plurality of aut
Sette Paul R.
Sloan, Jr. Richard A.
Melton Michael E.
Pitney Bowes Inc.
Reichman Ronald
Vo Anh T. N.
LandOfFree
In-line printer with automatic positioning multiple... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with In-line printer with automatic positioning multiple..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and In-line printer with automatic positioning multiple... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2612413