Implementation techniques of self-checking arithmetic operators

Boots – shoes – and leggings

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

371 494, 371 63, G06F 1110, G06F 749

Patent

active

054503400

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

1. Field of the Invention
The invention concerns a technique which allows efficient implementation of self-checking arithmetic operators and data paths.
2. Background of the Related Art
Designing self-checking arithmetic units is a much more complex task than designing self-checking memory systems, register files, and shifters. Since arithmetic units (i.e. adders, ALUs, multipliers and dividers) are an essential element of computers, designing efficient self-checking arithmetic units is an important challenge in the area of self-checking and fault tolerant computers. That is why from the very early developments of fault tolerant computers an important amount of effort has been done on designing self-checking arithmetic units. The first designs are based on arithmetic residue codes (see in "PETERSON W. W. On checking an Adder, IBM J. Res. Develop. 2, pp.166-168, April 1958", in "PETERSON W. W., WELDON E. J., "Error-Correcting Codes", second Ed., The MIT press, Cambridge, Mass., 1972", in "AVIZIENIS A., Arithmetic Algorithms for Error-Coded Operands IEEE Trans. on Comput., Vol. C-22, No. 6, pp.567-572, June 1973"), and have been used in the JPL STAR Computer. Then parity prediction schemes has been given (see in "SELLERS F. F., HSIAO M.-Y. and BEARNSON L. W., Error Detecting Logic for Digital Computers, New-York: Mc GRAW-HILL 1968", and in "GARCIA O. N., RAO T. R. N., On the method of checking logical operations, Proc. 2nd Annual Princeton Conf. Inform. Sci. Sys., pp. 89-95 (1968)"), and more recently a Berger code prediction scheme has been proposed (see in LO J-C., THANAWASTIEN S., RAO T. R. N., NICOLAIDIS M. "An SFS Berger Check Prediction ALU and Its Application to Self-Checking Processors Designs" To appears in IEEE Transactions on CAD of ICAS).
Residue arithmetic codes are interesting for checking the arithmetic units since these codes are closed under arithmetic operations (i.e. if the operands belong to an arithmetic code the results of an arithmetic operation belong to this code too). However, they have the following drawbacks: the parity code, but in order to avoid complex code translators they also must be checked by the arithmetic code. This increase the area overhead of the whole data path. adders checked by arithmetic codes (LANGDON G. G, TANG C. K. "Concurrent error detection for group look-ahead Binary Adders", IBM J. Res.Develop., pp.563-573, September 1970). residue arithmetic codes in ALUs requires complex circuit implementation for residue prediction. self-checking memory systems (parity encoding), nor with fault tolerant memory systems (Hamming SEC/DED).
Parity prediction self-checking arithmetic units (see in "SELLERS F. F., HSIAO M.-Y. and BEARNSON L. W., Error Detecting Logic for Digital Computers, New-York: Mc GRAW-HILL 1968"), and logic units (see in "GARCIA O. N., RAO T. R. N., On the method of checking logical operations, Proc. 2nd Annual Princeton Conf. Inform. Sci. Sys., pp. 89-95 (1968)") have also been proposed. This scheme detects the single errors produced on the outputs of the arithmetic unit. Parity prediction arithmetic units require the lowest hardware overhead among all known self-checking arithmetic unit schemes. This scheme is compatible with parity checked data paths (which requires the minimum hardware overhead) and with parity encoded self-checking memory systems. It also can be modified to be compatible with Hamming SEC/DED memory systems (see "E. FUJIWARA, K. HARUTA Fault-tolerant Arithmetic Logic Unit Using Parity Based Codes. The transactions of the IECE of Japan, Vol E64, No. 10, October 1981". However, a single fault in an arithmetic unit can produce an error on a carry signal which can be propagated to several outputs of the arithmetic unit. Thus the parity scheme does not ensure the fault secure property for single faults.
The self-checking processor (SCP) described in (NANYA T., KAWAMURAT., "Error Secure/Propagation Concept and its Fault Secure Processors" IEEE Trans. on Comput., Vol. 37, No 1, pp. 14-24, January 1988) uses dou

REFERENCES:
patent: 3925647 (1975-12-01), Louie
patent: 4224680 (1980-09-01), Miura
patent: 4638482 (1987-01-01), Griffin et al.
patent: 4924117 (1990-05-01), Tamaru
patent: 4924424 (1990-05-01), Vassiliadis
patent: 4958353 (1990-09-01), Greiner et al.
"Concurrent Error Detection for Group Look-ahead Binary Adders" by G. G. Langdon, Jr. and C. K. Tang, IBM J. Res. Develop, Sep. 1970, pp. 563-573.
"Effect of Byzantine Hardward Faults on Concurrent Error Checking" by Takashi Nanya and Hendrik A. Goosen, 1987 IEEE CH2469-May 1987 pp. 242-245.
"Test Generation for MOS Circuits Using D-Algorithm" by Sunil K. Jain and Vishwani D. Agrawal, 1983 IEEE 0738-100X/83 pp. 64-70.
"Fault Equivalance in Combinational Logic Networks" by Edward J. McCluskey and Frederick W. Clegg, IEEE Transactions on Computers, vol. c-20, No. 11, Nov. 1971, pp. 1286-1293.
"Arithmetic Algorithms for Error-Coded Operands" by Algirdas Avizienis, IEEE Transactions on Computers, vol. c-22, No. 6, Jun. 1973, pp. 567-572.
"Error Secure/Propagating Concept and its Application to the Design of Strongly Fault-Secure Processors" by Takashi Nanya, IEEE Transactions on Computers, vol. 37, No. 1, Jan. 1988, pp. 14-24.
"Strongly Fault-Secure and Strongly Self-Checking Domino-CMOS Implementations of Totally Self-Checking Circuits" by Niraj K. Jha, IEEE Transactions on Computer-Aided Design, vol. 9, No. 3, Mar. 1990, pp. 332-336.
"Testing of Differential Cascode Voltage Switch (DCVS) Circuits" by Nick Kanopoulos and Nagesh Vasanthavada, IEEE Journal of Solid-State Circuits, vol. 25, No. 3, Jun. 1990, pp. 806-813.
"The Design of Easily Testable VLSI Array Multipliers" by John Paul Shen and F. Joel Ferguson, IEEE Transactions on Computers, vol. c-33, No. 6, Jun. 1984, pp. 554-560.
"Shorts in Self-Checking Circuits" by M. Nicolaidis, Journal of Electronic Testing: Theory and Applications, 1,257-273 (1991).
"The Design of Radiation-Hardened ICs for Space: A Compendium of Approaches" by Sherra E. Kerns, Proceedings of the IEEE, vol. 76, No. 11, Nov. 1988, pp. 1470-1509.
"Fault Detection in CVS Parity Trees: Application to SSC CVS Parity and Two-Rail Checkers" by Niraj K. Jha, 0731-3071/89/0000/0407 1989 IEEE, pp. 407-414.
"Test Generation for Arithmetic Units by Graph Labelling" by Abhjit Chatterjee and Jacob A. Abraham, 0731-3071/87/0000/0284 1987 IEEE, pp. 284-289.
"Accurate Fault Modeling and Efficient Simulation of Differential CVS Circuits" by Z. Barzilai, V. S. Iyengar, B. K. Rosen, and G. M. Silberman, CH2230-1/85/0000/00722 1985 IEEE, pp. 722-729.
"Evaluation of a Self-Checking Version of the MC 68000 Microprocessor" by M. Nicolaidis, 0731-3071/85/0000/0350 1985 IEEE, pp. 350-356.
"On CMOS Totally Self-Checking Circuits" by Sridhar R. Manthani and Sudhakar M. Reddy, 1984 International Test Conference, CHO284-2/0000/0866 1984 IEEE, pp. 866-877.
"On Testable Design for CMOS Logic Circuits" by Sudhakar M. Reddy, Madhukar K. Reddy and Jon G. Kuhl, CH1933-1/83/0000/0435 1983 IEEE, pp. 435-445.
"Shorts in Self-Checking Circuits" by M. Nicolaidis, 1987 International Test Conference, CH2347-2-87/0000/0408 1987 IEEE, pp. 408-417.
"Layout Rules for the Design of Self Checking Circuits" by M. Nicolaidis and B. Courtois, VLSI '85, pp. 261-272.
"Design of NMOS Strongly Fault Secure Circuits Using Undirectional Errors Detecting Codes" by M. Nicolaidis and B. Courtois, 0731-3071/86/0000/0022 1986 IEEE, pp. 22-27.
"Test Pattern Generators for Arithmetic Units and Arithmetic and Logic Units" by M. Nicolaidis.
"An SFS Berger Check Prediction ALU and Its Application to Self-Checking Processor Designs", by Jien-Chung Lo, Suchai Thanawastien, T. R. N. Rao and Michael Nicolaidis, IEEE Transactions on Computer-Aided Design, vol. 11, No. 4, Apr. 1992, pp. 525-540.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Implementation techniques of self-checking arithmetic operators does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Implementation techniques of self-checking arithmetic operators , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implementation techniques of self-checking arithmetic operators will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-410591

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.