Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone
Reexamination Certificate
1997-12-09
2001-06-26
Willse, David H. (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Implantable prosthesis
Bone
C623S023700, C623S001460, C427S002250, C427S002240
Reexamination Certificate
active
06251142
ABSTRACT:
FIELD OF THE INVENTION
The present invention concerns an implantation device, a method for its manufacture and a kit including it.
The invention has been developed with particular attention to its possible application to so-called stents for angioplasty. The invention is, however, applicable to implantation devices generally and should not therefore be understood as limited to the specific field of use referred to below in the present description.
BACKGROUND OF THE INVENTION
The term “stent for angioplasty” is intended generally to indicate devices intended for endoluminal application (for example, in a blood vessel, in association with percutaneous transluminal coronary angioplasty, or PTCA), usually effected by means of catheterisation of a stenotic site dilated using PTCA or ablation. The in situ expansion of the stent stabilises the expanded lumen with a consequent reduction in the likelihood of restenosis, the likelihood of which is very high (approximately 40%) in the case of PTCA alone.
The local support of the lumen by the stent, which is left in its expanded state at the treated site, avoids the restenosis of the site. The use of substantially similar structures to achieve the in situ expansion and anchorage of vascular grafts has already been proposed in the art: naturally, this possible extension of the field of application is also to be understood as coming within the ambit of the invention.
For a general review of vascular stents, reference may usefully be made to the work “Textbook of Interventional Cardiology” edited by Eric J. Topol, W.B. Saunders Company, 1994 and, in particular, to section IV of volume II, entitled “Coronary Stenting”.
Many patent documents have also addressed this problem, for example, U.S. Pat. No. 4,776,337, U.S. Pat. No. 4,800,882, U.S. Pat. No. 4,907,336, U.S. Pat. No. 4,886,062, U.S. Pat. No. 4,830,003, U.S. Pat. No. 4,856,516, U.S. Pat. No. 4,768,507, and U.S. Pat. No. 4,503,569.
However, the implantation of these devices may give rise to secondary pathological phenomena such as, for example, acute thrombosis which requires additional antithrombogenic treatment that is usually administered systemically, or an excessive thickening of the neointima (hyperplasia), or spasms of the vascular wall.
Various solutions have been proposed in the past in order to overcome these negative effects.
One line of research generally envisages overcoming the aforesaid negative phenomena by way of radioactive treatments. This first line of investigation is documented, for example, in the following works:
“Intracoronary Radiation Before Stent Implantation Inhibits Neointima Formation in Stented Porcine Coronary Arteries” by Ron Waksman et al., Circulation, 1995; 92; 1383-1386;
“Radioactive Stents for the Prevention of Neointimal Hyperplasia” by Tim A. Fischell, from “The new manual of interventional cardiology”, Physician's Press, Birmingham, chapter 18 (1996), p. 134 ss;
“Pure &bgr;-Particle-Emitting Stents Inhibit Neointima Formation in Rabbits”, by Cristoph Hehrlein et al., Circulation 1996; 93; 641-645;
“Inhibition of Neointimal Proliferation With Low-Dose Irradiation From a &bgr;-Paticle-Emitting Stent” by John R. Laird et al., Circulation; 1996; 93; 529-536; and
“The Beta-Particle-Emitting Radioisotope Stent (Isostent): Animal Studies and Planned Clinical Trials” by Tim A. Fischell et al., Am. J. Cardiol. 1996; 78 (suppl. 3A); 45-50.
Irrespective of its ultimate effectiveness, this solution encounters an essentially practical difficulty caused by the fact that, in most cases, the use of such a stent assumes the typical features of radiotherapy and/or nuclear medicine. This means that it is necessary to operate in a specifically equipped and authorised environment: this factor has the effect of negating many of the intrinsic advantages of the stent such as, in the first instance, the introduction of techniques once limited to the area of cardiac surgery into much simpler methods of intervention (catheterisation) which can practically be effected at the out-patient level.
Another line of research concerns substantially the administration and/or the localised release of active substances in the zone of the stent. This latter line of research is documented, for example, in the following works:
“Local Drug Delivery: The Development of a Drug Delivery Stenf” by Richard Stack, The Journal of Invasive Cardiology, Vol. 8, No. 8, October 1996 pages 396-397;
“Local Intraluminal Infusion of Biodegradable Polymeric Nanoparticles” by Louis A. Guzman et al., Circulation, 1996; 94; 1441-1448;
“Local Angiopeptin Delivery Using Coated Stents Reduces Neointimal Proliferation in Overstretched Porcine Coronary Arteries” by Ivan De Schreerder et al., J. Invas. Cardiol. 1996; 8; 215-222.
Many applicational problems are caused by this mode of operation, mainly linked to the specific solutions adopted which are, in any case, related to the fact that it enables little, and maybe even no, flexibility in terms of the timing of the association with the stent of the active substance and/or the possible variation of this latter. In addition, the problem exists of preventing the agent or agents intended for administration in the zone of the stent being delivered or transported to different areas where they could have negative or damaging effects. Other difficulties may arise, for example, in ensuring the permanence and the gradual release over time of active substances capable of being, as it were, washed away by the blood passing through the stent (or the implantation device in general). There are also cases in which it is desirable to be able to supply the site of the implantation device at successive intervals with active substances which, clearly, cannot be applied simultaneously to the device before implantation due to restrictions in their bonding chemistry.
For completeness, reference may also be made to biodegradable stents as illustrated, for example, in the work “Biodegradable Stents: The Future of Interventional Cardiology?” by M. Labinaz et al., Journal of International Cardiology, Vol. 8, No. 4, 1995, pp. 395-405. The main disadvantage of this solution clearly resides in the fact that, at least in the long term when the stent has completely or substantially degraded, it becomes less able mechanically to support the vessel wall against the risk of collapse.
SUMMARY OF THE INVENTION
The object of the present invention is thus to provide an implantation device which allows various kinds of active principle to be administered to the patient in whom the implantation has been made, which is very versatile both in terms of the principle to be applied and the timing of its association with the implantation device, and which avoids the disadvantages of the known solutions described above.
This object is achieved by virtue of an implantation device characterised in that at least a portion of the surface of the body of said device is coated with a receptor capable of binding selectively with a ligand formed by combining an active principle with a substance capable of binding specifically to the receptor.
A kit comprising a coated implantation device of the type described above and a preparation containing the ligand, which preparation is capable of being brought in contact with the device, as required, comprises a further subject of the invention.
In one aspect, this invention is an implantation device, such as a stent, comprising a body having a surface, wherein at least a portion of the surface is coated with a receptor capable if binding with a ligand formed by combining an active principle with a substance capable of binding to the receptor.
In a preferred embodiment, the receptor is avidin, streptavidin, biotin, antigens, antibodies, lectin or glycoprotein.
In another preferred embodiment, the receptor and the substance in the ligand capable of binding with the receptor is streptavidin-biotin, biotin-streptavidin, avidin-biotin, biotin-avidin, antigen-antibody, antibody-antigen, lectin-glycoprotein or glycoprotein-lectin.
In another aspect, this invention is a me
Bernacca Giuliana
Ciana Leopoldo Della
Curcio Maria
Massaglia Anilla
Jackson Suzette J.
Popovich & Wiles, P.A.
Sorin Biomedica Cardio S.p.A.
Willse David H.
LandOfFree
Implantation device and a kit including the device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Implantation device and a kit including the device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implantation device and a kit including the device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2519985