Implantable stroke risk reduction device

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001360, C623S001390

Reexamination Certificate

active

06740112

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to implantable stroke treating devices, and more specifically is concerned with a device for reducing the risk of embolic material entering into the internal carotid artery of an individual and blood clots (collectively and interchangeably referred to as “embolic material”).
BACKGROUND OF THE INVENTION
A major portion of blood supply to the brain hemispheres is by two arteries, referred to as common carotid arteries (CCA), each of which branches off, or bifurcates as the term is at times used, into a so-called internal carotid artery (ICA) and an external carotid artery (ECA). Blood to the brain stem is supplied by two vertebral arteries.
Cerebralvascular diseases are considered among the leading causes of mortality and morbidity in the modern age. Strokes denote an abrupt impairment of brain function caused by pathologic changes occurring in blood vessels. The main cause of strokes is insufficient blood flow to the brain (referred to as “an ischemic stroke”) which are about 80% of stroke cases.
Ischemic strokes are caused by sudden occlusion of an artery supplying blood to the brain. Occlusion or partial occlusion (stenosis) are the result of diseases of the arterial wall. Arterial atherosclerosis is by far the most common arterial disorder, and when complicated by thrombosis or embolism it is the most frequent cause of cerebral ischemia and infarction, eventually causing the cerebral stroke.
Cardioembolism causes about 15%-20% of all strokes. Stroke caused by heart disease is primarily due to embolism of thrombotic material forming on the atrial or ventricular wall or the left heart valves. These thrombi then detach and embolize into the arterial circulation. Emboli large enough can occlude large arteries in the brain territory and cause strokes.
Cardiogenetic cerebral embolism is presumed to have occurred when cardiac arrhythmia or structural abnormalities are found or known to be present. The most common causes of cardioembolic stroke are nonrheumatic (non-valvular) atrial fibrillation (AF), prothestic valves, rheumatic heart disease (RHD), ischemic cardiomyopathy, congestive heart failure, myocardial infarction, port-operatory state and protruding aortic arch atheroma (A.A.A.).
Such disorders are currently treated in different ways such as by drug management, surgery (carotid endarterectormy) in case of occlusive disease, or carotid angioplasty and carotid stents.
While endarterectomy, angioplasty and carotid stenting are procedures targeting at opening the occluded artery, they do not prevent progression of new plaque. Even more so, the above treatment methods only provide a solution to localized problems and do not prevent proximal embolic sources, i.e., embolus formed at remote sites (heart and ascending aorta) to pass through the reopened stenosis in the carotid and occlude smaller arteries in the brain. This is a substantial problem, inasmuch as about one-third of patients suffering from carotid occlusion also have proximal embolic sources leading to stroke. It should be noted that only about 20% of the cases of stroke result from an occlusion of the carotid.
It will also be appreciated that endarterectomy is not suitable for intracarnial arteries or in the vertebrobasilar system since these arteries are positioned within unacceptable environment (brain tissue, bone tissue) or are too small in diameter.
Introducing filtering means into blood vessels, in particular into veins, has been known for some time. However, filtering devices known in the art are generally of a complex design, which renders such devices unsuitable for implantation within carotid arteries, and unsuitable for handling fine embolic material. However, when considering the possible cerebral effects of even fine embolic material occluding an artery supplying blood to the brain, the consequences may be fatal or may cause irreversible brain damage.
However, in light of the short period of time during which brain tissue can survive without blood supply, there is significant importance to providing suitable means for preventing even small embolic material from entering the internal carotid artery, so as to avoid brain damage.
A drawback of prior art filtering means is their tendency to become clogged. On the one hand, in order to provide efficient filtering means, the filter should be of fine mesh. On the other hand, a fine mesh has a higher tendency toward, and risk of, occlusion.
It should also be noted that the flow ratio between the ICA and the ECA is about 4:1. This ratio also reflects the much higher risk of embolic material flowing into the ICA.
It is thus an object of the present invention to provide an implantable deflecting device suitable to be positioned within a blood vessel supplying blood to the brain, and further suitable to deflect embolic material that would have flown into the internal carotid artery, into the external carotid artery, thereby preventing the entry of said embolic material into the internal carotid artery, and thus preventing extracarnial embolus to occlude small intercarnial arteries in the brain.
It is another object of the invention to provide a method for treating a patient known to suffer from embolic diseases, by selectively occluding the passage of embolic material into the internal carotid artery.
It is yet another object of the invention to provide a method for preventing conditions associated with embolic material.
Other objects of the invention will become apparent as the description proceeds.
SUMMARY OF THE INVENTION
The present invention provides an implantable device for positioning in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA), comprising a deflecting element suitable to deflect the flow of embolic material flowing in the CCA toward the ICA, into the ECA. Preferably, but non-limitatively, the deflecting element comprises filtering means.
Thus, in one aspect, the invention provides an implantable deflecting device comprising an anchoring member engageable with inner walls of a carotid artery, and one or more deflecting members for deflecting flow of embolic material into the ECA, substantially without obstructing blood flow into the ICA.
According to the invention there is thus provided an implantable device for positioning about a blood vessel bifurcation zone to control flow of embolic material around said bifurcation, the device comprising:
an anchoring element extending within said zone of bifurcation to anchor said device therein, and a deflecting element, associated with said anchoring element, said deflecting element comprising a mesh having a mesh size sufficient to allow passage of blood without hindrance whilst occluding passage of embolic material exceeding a predetermined size.
The anchoring member and the deflecting member may be integral with one another or attached or coupled to one another. In the present specification the anchoring member and the deflecting member may be referred to also as anchoring portion and deflecting portion, respectively.
In accordance with a particular preferred embodiment of the invention, the deflecting member is a screening element fitted at the inlet into the ICA and is adapted to prevent the passage into the ICA of embolic material above a predetermined size.
By a preferred embodiment, at least the anchoring member is a stent adapted for insertion via the vasculature of an individual. The implantable deflecting device in accordance with any of the embodiments of the present invention may be permanently implanted or may be removed after a period of time, depending on the course of treatment and the medical procedure.
As will become evident from the description to follow, the deflecting member is preferably, but not compulsorily, positioned at the inlet into the internal carotid artery, whereas the anchoring member may be positioned in a variety of locations. The deflecting member, however, may be positioned at any location that fulfills two cond

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Implantable stroke risk reduction device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Implantable stroke risk reduction device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implantable stroke risk reduction device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3263931

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.