Implantable stimulus system having stimulus generator with...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S018000, C607S019000, C607S023000, C607S036000, C607S037000

Reexamination Certificate

active

06223081

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the field of implantable medical devices and, more particularly, to a pacemaker system having a pacemaker which contains a pressure sensor in combination with a pacing lead which connects stimulus pulses to the patient's heart and which is operatively connected to the pacemaker so as to transmit cardiac pressure signals to the pressure sensor.
BACKGROUND OF THE INVENTION
In the area of implantable medical devices, there has been a substantial effort to develop sensors for obtaining information from a body organ such as the heart, or relating to a body function such as respiration. For these purposes, catheters and leads have been widely used with medical devices, both external and implantable, including pacemakers, cardioverter/defibrillators, drug dispensers, cardiac monitors, and a variety of different types of stimulators. The common system arrangement is to have one or more catheters, or leads which interconnect the device with the body organ or body location. The terms catheter and lead are used interchangeably here; as used in this specification, either a lead or catheter connects the device to the body location so as to transmit electrical signals between its distal end and the device, and/or pressure or other signals from the body location to the device. A pacing lead, for example, may include one or more electrodes at about its distal end, and a conductor running the length of the lead to transmit stimulus pulses to the heart and conduct heart signals back to the pacemaker. It is also known to have sensors incorporated into the lead for sensing parameters for operational and diagnostic use, with additional conductors connecting the sensor signals back to the proximal end of the lead/catheter, for connection to the pacemaker or other device. In addition to sensing cardiac electrical activity, sensors are used for sensing, eg, blood pressure waves, acoustic waves, respiratory sounds, etc. Thus, for a wide variety of applications there is a need for efficient transmission of signals from a body location to an implanted device. Although this invention embraces various such applications, it will be illustrated primarily in the environment of the preferred embodiment, a pacemaker system.
Modern pacemaker systems have evolved greatly beyond the initial pacemakers which simply delivered a fixed rate of pacing pulses. Pacemakers are widely programmable to operate in different modes and to operate with different pacing parameters. Specifically, many pacemakers are rate responsive, meaning that they automatically sense the patient's demand, or need for rate variation, and adjust pacing rate accordingly. Pacemaker systems are also incorporating more sensor information relating to the patient's metabolic needs and cardiac history. The ability of the pacemaker to undertake additional diagnostic functions, and to accurately adapt pacemaker performance to metabolic needs, is dependent upon good sensor information.
As is well known, rate responsive or rate adaptive pacemakers may utilize any one of a number of different sensors for obtaining different physiologically based signals. Sensors that provide an indication of actual heart performance are coming into greater use. For example, sensors are used for measuring the pressure inside the patient's right ventricle, intramyocardial pressure, or myocardial contractility. Sensing pressure within the patient's heart is known to offer good potential for accurate determination of the patient's needs. See U.S. Pat. No. 5,353,800, assigned to Medtronic, Inc., which provides a discussion of the many different types of pressure sensors used in cardiac pacing systems.
As discussed in the prior art, the approach to measuring pressure changes within the heart has generally involved special leads adapted to carry a sensor which is located within the heart. Thus, a pressure sensor is located on the pacing lead close to the distal tip end, preferably positioned to maximize the sensor response. Such a lead requires extra wires throughout the length of the lead, for interconnection of the sensor signal to the pacemaker. Further, packaging a sensor in a lead tip, while maintaining the requisite minimal lead dimensions, presents considerable difficulty. Thus, it would be advantageous, both for newly implanted pacing systems and for replacement systems, to provide the pacemaker itself with one or more pressure sensors which receive pressure signals representative of cardiac movement, which signals are transmitted through a standard pacing lead and delivered to the pacemaker-mounted sensor. Such an arrangement, as presented by this invention, renders unnecessary any special lead construction, and by-passes the problems of fabricating a sensor on the lead and properly positioning the sensor within the heart. Further, for a patient requiring pacemaker, or pulse generator replacement, and already having a standard lead, it would clearly be advantageous to be able to replace the pacemaker with one which contains apparatus for reliably receiving a pressure signal transmitted through the implanted pacing lead.
There have been some prior art efforts to provide an implantable system with a catheter or lead which transmits a pressure signal from a body location such as the heart back to the control device, eg, the pacemaker. See, for example, U.S. Pat. Nos. 4,763,646 to Lekholm, and 5,353,800 to Pohndorf et al. These patents provide suggestions of transmitting pressure signals to the interior of a pacemaker can, but do not disclose efficient structure for achieving this. There thus remains a significant need in the implantable device art, and the pacemaker art in particular, for a system which provides for reliable and useful chronic transmission of signals such as pressure signals from an interior body location to the implanted device.
SUMMARY OF THE INVENTION
Accordingly, it is an object of this invention to provide an implantable medical device system, and particularly a pacemaker system, which achieves reliable and efficient transmission and coupling of pressure signals from a body location such as the heart to an implanted device such as a pacemaker, whereby accurate information can be obtained from such pressure signals.
The preferred embodiment of the present invention provides a pacing system which meets the object of utilizing a pressure sensor positioned in the implantable pacemaker, as contrasted to a system having a pressure sensor fabricated within the lead portion which is positioned in the patient's heart. The invention provides for utilizing relative pressure signals which are transmitted from the patient's heart through the lumen of a standard pacing lead, or any other pacing lead, which signals are communicated to a pressure sensor mounted either within the pacemaker connector block, or within the encapsulated pacemaker can. By this arrangement, the pacemaker-mounted sensor receives detectable pressure variations representative of heart movement, i.e., contraction and relaxation, and is able to transform such relative pressure signals into parameter signals for use in controlling a pacemaker operating variable such as pacing rate. The system may employ a second reference sensor, and may employ plural lead/catheters for transmitting the pressure signals to the implanted device.
Accordingly, there is provided a pacemaker system having a standard pacing lead with a central lumen, the pacing lead having a distal end which is inserted into the patient's heart, and a proximal end which is connected to the implanted pacemaker at the pacemaker connector block. The physical movement of the heart produces pressure changes in the outer wall or casing of the lead distal portion, which relative changes are transmitted to the interior lumen, and through the length of the lumen to the proximal end of the lead. In a first embodiment of the invention, a pressure transducer is positioned within the header, or connector block, at a distance from the lumen opening at the pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Implantable stimulus system having stimulus generator with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Implantable stimulus system having stimulus generator with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implantable stimulus system having stimulus generator with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2444769

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.