Surgery – Body inserted urinary or colonic incontinent device or... – Implanted
Reexamination Certificate
2001-08-01
2003-04-22
Winakur, Eric F. (Department: 3736)
Surgery
Body inserted urinary or colonic incontinent device or...
Implanted
Reexamination Certificate
active
06551235
ABSTRACT:
BACKGROUND AND SUMMARY OF THE INVENTION
The present invention relates to a pump and methods for implanting the pump in a patient's body. More specifically, the present invention relates to a pump of small size and few moving elements, in order to make the pump reliable and suitable for implantation.
Small pumps currently available comprise various kinds of valves. However, such valves may malfunction after some time making the pump unreliable and therefore not suited for implantation. Implanted pumps used together with implants definitely need to be able to stay in the human body for a very long time and still work without problems. There are valve-less pumps available, such as gear pumps. However, prior valve-less pumps are not suited for implantation, because they are complicated, expensive and leaky.
An object of the present invention is to provide a small, simple and reliable pump suited for implantation in a human body.
Another object of the invention is to provide an apparatus including the pump, for restricting the flow in a passage of a patient's organ.
Yet another object of the invention is to provide methods for implanting the pump together with hydraulic devices served by the pump.
Accordingly, in accordance with a first aspect of the invention, there is provided a pump for medical implantation, comprising a housing forming a cylindrical cavity having a closed end and an open end opposite the closed end, the housing being provided with a first fluid channel opening into the cavity at a first location and a second fluid channel opening into the cavity at a second location circumferentially displaced from the first location, a cylindrical piston movable in the cavity and having an indentation for providing fluid communication between the cavity and the first channel, when the piston is turned into a first turning position, and for providing fluid communication between the cavity and the second channel, when the piston is turned into a second turning position, and a motion device for moving the piston back and forth to provide fluid flow between the cavity and any of the channels and for rotating the piston back and forth between the first and second positions.
Advantageously, the cylindrical piston is movable as a loose body in the cavity. Thus, the loose piston also functions as a valve. As a result, the pump of the invention is simple and very reliable, since it is devoid of traditional valves.
Alternatively, the housing may be provided with more than two fluid channels opening into the cavity of the housing, wherein the motion device is capable of rotating the piston so that the indentation of the piston can provide fluid communication between the cavity and any one of the channels.
In accordance with an embodiment of the invention, the pump comprises a rod, which is movable by magnetic force, the rod being rigidly connected to the piston and extending through the open end of the cylindrical cavity, wherein the motion device comprises a first solenoid for generating a first magnetic force to move the rod axially back and forth, so that the piston performs suction and pressure strokes. Preferably, the motion device further comprises a second solenoid for generating a second magnetic force to rotate the rod back and forth so that the piston is moved between the first and second positions. As a result, the piston has no mechanical connection with anything outside the housing, because it is only moved by magnetic forces generated by the two solenoids. Accordingly, since the piston with its rod is the only element of the pump that is movable, this embodiment is extremely reliable. In this embodiment, an energizer, including, for example, a battery and pulse generating means, may be provided for powering the solenoids with electric pulses. As a result, the pump will have low energy consumption. Only one electric pulse through the further solenoid may be sufficient to provide a shift of the piston between the first and second positions of the piston.
The rod may be magnetic and orientated such that it exerts a force on the piston in the direction opposite the axially moving direction of the piston, when the solenoid is energized to pull the piston in the suction stroke, and exerts a force on the piston in the same direction as the axially moving direction of the piston, when the solenoid is energized to push the piston in the pressure stroke. As a result, the total axial force acting on the piston will be reduced when the piston performs a suction stroke, and increased when the piston performs a pressure stroke.
Generally, the housing and piston are made of ceramic material and the clearance between the piston and the housing is less than 5 &mgr;m, which provides a practically gas-tight seal between the piston and the housing.
In accordance with a second aspect of the invention, there is provided an apparatus for restricting the flow in a passage of a patient's organ, comprising a hydraulic constriction device implanted in the patient to form a constriction of the passage, the constriction device being operable to change the constriction of the passage, a reservoir implanted in the patient for supplying hydraulic fluid for the operation of the hydraulic constriction device, and the pump of the present invention as described above implanted in the patient for pumping hydraulic fluid between the reservoir and the hydraulic constriction device to operate the hydraulic constriction device to change the constriction of the passage.
The apparatus may be used for treating a number of different diseases. Thus, it may be used for an obese patient or a patient suffering from reflux and heartburn disease, wherein the hydraulic constriction device forms a constriction of the patient's stomach or esophagus. It may be used for a urinary or anal incontinent patient, wherein the hydraulic constriction device forms a constriction of the urethra or rectum. It may also be used for an impotent patient, wherein the hydraulic constriction device forms a constriction of the patient's exit penile veins.
The pump of the invention can be made very small, which makes it particularly suited for implantation. Thus, in accordance with a third aspect of the invention, there is provided a method for laparascopically implanting a hydraulically operable implant together with the pump as described above in a patient's abdomen, the method comprising the steps of: a) insufflating the patient's abdomen to form a pneumoperitoneum; b) inserting at least one laparascopic trocar into the abdomen; c) using the trocar to introduce the hydraulic implant and pump into the abdomen; and d) operating a tool via the trocar to fix the hydraulic implant and pump at selected locations in the abdomen and to provide a hydraulic connection between the pump and the hydraulic implant.
The method may further comprise step e): post-operatively controlling the implanted pump in a non-invasive manner for the operation of the hydraulic implant. Step (e) may be performed by using a wireless remote control for controlling the pump and may further comprise transmitting wireless energy from outside the patient's body for use in the power of the implanted pump.
Alternatively, the pump may be subcutaneously implanted. Thus, there is also provided a method for implanting a hydraulically operable implant together with the pump as described above in a patient's abdomen, the method comprising the steps of: a) insufflating the patient's abdomen to form a pneumoperitoneum; b) inserting at least one laparascopic trocar into the abdomen; c) using the trocar to introduce the hydraulic implant into the abdomen; d) operating a tool via the trocar to fix the hydraulic implant at a selected location in the abdomen; e) subcutaneously implanting the pump; and f) providing a hydraulic connection between the pump and the hydraulic implant. Also in this alternative method the implanted pump may be post-operatively controlled in a non-invasive manner for the operation of the hydraulic implant, suitably by us
Potencia Medical AG
Szmal Brian
LandOfFree
Implantable pump does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Implantable pump, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implantable pump will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3091291