Implantable multi-chamber cardiac stimulation device with...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S512000

Reexamination Certificate

active

06760622

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to implantable cardiac stimulation devices, and in particular to multisite stimulation devices in which multiple sensing vectors are provided for accurate detection of cardiac events, their origin, and their conduction time and direction, by incorporating one or more passive sensing electrodes in each chamber of the heart.
BACKGROUND OF THE INVENTION
In a normal human heart, the sinus node, generally located near the junction of the superior vena cava and the right atrium, constitutes the primary natural pacemaker initiating rhythmic electrical excitation of the heart chambers. The cardiac impulse arising from the sinus node is transmitted to the two atrial chambers, causing a depolarization known as a P-wave and the resulting atrial chamber contractions. The excitation pulse is further transmitted to and through the ventricles via the atrioventricular (A-V) node and a ventricular conduction system causing a depolarization known as an R-wave and the resulting ventricular chamber contractions.
Disruption of this natural pacemaking and conduction system as a result of aging or disease can be successfully treated by artificial cardiac pacing using implantable cardiac stimulation devices, including pacemakers and implantable defibrillators, which deliver rhythmic electrical pulses or other anti-arrhythmia therapies to the heart at a desired energy and rate. One or more heart chambers may be electrically stimulated depending on the location and severity of the conduction disorder.
Cardiac pacemakers conventionally stimulate a heart chamber by applying current pulses to cardiac tissues via two electrodes, a cathode and an anode. Standard pacing leads are available in either of two configurations, unipolar leads or bipolar leads, depending on the arrangement of the electrodes of a particular lead. A unipolar pacing lead contains a single electrode, normally the cathode, which extends pervenously distal from the pacemaker in an insulating enclosure until it is adjacent to the tip of the lead where the insulation is terminated to provide for electrical contact of the cathode with the heart tissue. The anode provides a return path for the pacing electrical circuit. For a unipolar lead, the anode is usually the pacemaker case.
A bipolar lead contains two electrodes within an insulating sheath, an anode that extends distal from the pacemaker to a position adjacent to, but spaced from, the electrode tip, and a cathode that also extends distal from the pacemaker, but terminates a short distance distal of the anode, at the lead tip. The anode commonly takes the form of a ring having greater surface area than the cathode tip. An insulating barrier separates the cathode and anode of a bipolar lead. In present-day pacemakers, circuits for pacing and sensing that determine tip, ring and case electrode connections are provided. Thus, the pacemakers can be programmed via telemetry for either bipolar or unipolar operation with respect to either sensing or pacing operations.
A single-chamber pacemaker delivers pacing pulses to one chamber of the heart, either one atrium or one ventricle, via either a unipolar or bipolar electrode. Single-chamber pacemakers can operate in either a triggered mode or a demand mode. In a triggered mode, a stimulation pulse is delivered to the desired heart chamber at the end of a defined time-out interval to cause depolarization of the heart tissue (myocardium) and its contraction. The stimulating pulse must be of sufficient energy to cause depolarization of the heart chamber, a condition known as “capture.” The lowest stimulation output required to achieve capture is termed “threshold.” The pacemaker also delivers a stimulation pulse in response to a sensed event arising from that chamber when operating in a triggered mode.
When operating in a demand mode, sensing and detection circuitry allow for the pacemaker to detect if an intrinsic cardiac depolarization, either an R-wave or a P-wave, has occurred within the defined time-out interval. If an intrinsic depolarization is not detected, a pacing pulse is delivered at the end of the time-out interval. However, if an intrinsic depolarization is detected, the pacing pulse output is inhibited to allow the natural heart rhythm to preside. The difference between a triggered and demand mode of operation is the response of the pacemaker to a detected native event.
Dual chamber pacemakers are now commonly available and can provide either trigger or demand type pacing in both an atrial chamber and a ventricular chamber, typically the right atrium and the right ventricle. Both unipolar or bipolar dual chamber pacemakers exist in which a unipolar or bipolar lead extends from an atrial channel of the dual chamber device to the desired atrium (e.g. the right atrium), and a separate unipolar or bipolar lead extends from a ventricular channel to the corresponding ventricle (e.g. the right ventricle). In dual chamber, demand-type pacemakers, commonly referred to as DDD pacemakers, each atrial and ventricular channel includes a sense amplifier to detect cardiac activity in the respective chamber and an output circuit for delivering stimulation pulses to the respective chamber.
If an intrinsic atrial depolarization signal (a P-wave) is not detected by the atrial channel, a stimulating pulse will be delivered to depolarize the atrium and cause contraction. Following either a detected P-wave or an atrial pacing pulse, the ventricular channel attempts to detect a depolarization signal in the ventricle, known as an R-wave. If no R-wave is detected within a defined atrial-ventricular interval (AV interval or AV delay), a stimulation pulse is delivered to the ventricle to cause ventricular contraction. In this way, rhythmic dual chamber pacing is achieved by coordinating the delivery of ventricular output in response to a sensed or paced atrial event.
Mounting clinical evidence supports the evolution of more complex cardiac stimulating devices capable of stimulating three or even all four heart chambers to stabilize arrhythmias or to re-synchronize heart chamber contractions. Reference is made to Cazeau et al., “Four Chamber Pacing in Dilated Cardiomyopathy,” Pacing Clin. Electrophsyiol., 1994, 17 (11 Pt 2):1974-9. In order to achieve multi-chamber or multi-site stimulation in a clinical setting, conventional dual-chamber pacemakers have been used in conjunction with adapters that couple together two leads going to different pacing sites or heart chambers. Reference is made to U.S. Pat. No. 5,514,161 to Limousin.
In certain currently available devices for multi-chamber pacing, adapters are no longer required. The connection between leads is hardwired internally in the stimulation device connector block, coupling the ventricular leads to the ventricular channel and the atrial leads to the atrial channel. While this design advantageously eliminates the need for adapters, the hardwire connections preclude the ability to distinguish between cardiac signals arising from a right chamber of the heart from cardiac signals arising from a left chamber of the heart. This obligatory coupling of the right and left heart chambers also prevents introducing separate timing between stimulation pulses delivered to the right and left chambers. Responding with a programmable delay between a sensed event in one chamber and delivery of an output pulse to the other chamber is thus made impossible.
Since one goal of multi-chamber stimulation is to provide a re-synchronization of the heart chambers in order to improve heart function in patients suffering from congestive heart failure, accurate detection of cardiac signals as well as recognizing the origin of a depolarization are important in achieving a desired therapeutic benefit from stimulation therapy. For example, it may be desirable to detect an intrinsic depolarization occurring in the right ventricle so that a stimulation pulse may be delivered to the left ventricle at a predefined time relative to the detected right ventricular depolarization in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Implantable multi-chamber cardiac stimulation device with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Implantable multi-chamber cardiac stimulation device with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implantable multi-chamber cardiac stimulation device with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211086

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.