Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2000-06-16
2004-06-22
Evanisko, George R. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
Reexamination Certificate
active
06754533
ABSTRACT:
BACKGROUND OF THE INVENTION
This disclosure relates to a medical device and more specifically to an implantable medical device having an internal processor that executes software.
The medical device industry produces a wide variety of electronic and mechanical devices for treating patient medical conditions. Depending upon medical condition, medical devices can be surgically implanted or connected externally to the patient receiving treatment. Clinicians use medical devices alone or in combination with drug therapies and surgery to treat patient medical conditions. For some medical conditions, medical devices provide the best, and sometimes the only, therapy to restore an individual to a more healthful condition and a fuller life. Many implantable medical devices have an internal processor that executes software.
Implantable medical devices with an internal processor typically include neuro stimulators, pacemakers, defibrillators, drug delivery pumps, and diagnostic recorders. The processor executes software to perform functions that can include telemetry, power management, physiological sensing, data recording, therapy delivery, and therapy measurement. As implantable medical devices have increased in sophistication, the software executed by the internal processor has also increased in complexity, and the task of debugging the software has increased in complexity. The internal processor meets these demands while operating under a variety of constraints such as power, size, memory, speed, and the like that limit the processor's ability to perform functions other than those required for normal medical device operation. When the internal processor is tasked to perform functions not required for normal medical device operation such as developmental testing, production conformance testing, diagnostics testing, the internal processor can require a significant amount of time to perform these functions. Previous efforts to perform testing included constructing a laboratory model of the implantable medical device using different components to reduce constraints such as power, size, memory, and speed. Although a laboratory module can simulate testing, there are still differences between performance of the laboratory model and performance of the implantable medical device. The time requirements for the internal processor to perform testing can delay production and require compromises to desirable testing protocols. The results for these constraints can be increased costs, increased production time, discrepancies between laboratory product tests and production product tests, and decreased discretionary testing.
For the foregoing reasons there is a need for an implantable medical device to be configured to perform medical device functions with an internal processor and perform testing and diagnostics in another fashion.
SUMMARY OF THE INVENTION
An implantable medical device with internal processor is configured for diagnostic emulation with an external processor to enhance diagnostic testing by capabilities such as faster testing and more realistic testing. The external processor is coupleable to the medical device to execute software involving medical device components with a bus switch coupled to the address bus, the data bus, and the internal processor. The bus switch has a bus switch external connector that when activated is configured to couple an external processor through the address bus external connection to the address bus and couple the external processor through the data bus external connector to the data bus. When the external processor is coupled to the medical device, the internal processor is decoupled from the address bus and data bus.
REFERENCES:
patent: 4532930 (1985-08-01), Crosby et al.
patent: 5464435 (1995-11-01), Neumann
Motorola HC11 Technical Data MC68HC11F1.
Helfinstine Alan R.
Jensen Steve
Evanisko George R.
Fredrikson & Byron , P.A.
Medtronic Inc.
LandOfFree
Implantable medical device configured for diagnostic emulation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Implantable medical device configured for diagnostic emulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implantable medical device configured for diagnostic emulation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3297500