Implantable lead functional status monitor and method

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S028000

Reexamination Certificate

active

06721600

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to leads used with implantable medical devices. Specifically, it relates to the monitoring of a lead's functional status, the storage of lead-related data, and an interpretation of these data into a report for use by the clinician.
BACKGROUND OF THE INVENTION
A wide assortment of automatic, body-implantable medical devices (IMDs) are presently known and commercially available. The class of such devices includes cardiac pacemakers, cardiac defibrillators and cardioverters, neural stimulators, among others. The leads used in these IMDs extend from the device through a plurality of pathways into or adjacent to various chambers of the heart, deep into the brain, into a location within the spine, and into or adjacent to other body organs, muscles and nerves, among others.
Many state-of-the-art pacemakers are capable of performing either unipolar or bipolar sensing and pacing in chambers of the heart. Unipolar pacing requires a lead with one insulated conductor and one distal pacing electrode disposed thereon. As will be appreciated by those of ordinary skill in the art, in most unipolar configurations, the casing of the implantable pulse generator (IPG) is conductive and functions as the indifferent electrode in pacing or sensing. Bipolar pacing and/or sensing, on the other hand, uses a lead with two mutually isolated conductors and two electrodes located in the heart. Typically, one electrode is disposed at the distal end of the lead and is referred to as the “tip” electrode, while the second electrode is located somewhat proximally from the tip electrode and is referred to as a “ring” electrode.
Generally, the leads are constructed of small diameter, highly flexible, reliable lead bodies made to withstand degradation by body fluids. In addition, they must be able to function in the presence of dynamic body environments that apply stress and strain to the lead body and the connections made to electrodes or sensor terminals. Some of these stresses may occur during the implantation process. Months or years later, porosity that developed from those stresses may be magnified by exposure to body fluids. These, in turn, may result in conductor or insulation related conditions that may be manifested in an intermittent or sudden Loss of Capture (LOC), out-of-range impedance and/or Loss of Sensing (LOS).
Many state-of-the-art pacemakers can be programmed to operate in either unipolar or bipolar pacing and sensing configurations using implanted leads that are responsive to changes in the patient's therapy needs. This gives the implanting physician considerable flexibility in configuring a pacing system to suit the particular needs of a patient. The state of the art in current use of leads is not completely fail safe. For example, one of the two conductors or electrodes on an implanted bipolar lead may fail for various reason, for example, a lead may fail because of breakage of a conductor due to metal fatigue, poor connection(s) between the lead(s) and the pacemaker itself, subclavian crushing of the lead, metal ion oxidation and a short circuit due to urethane/silicone breakdown. In such cases, it would be necessary to re-program the lead configuration manually or automatically to unipolar pacing and sensing in order for the pacemaker to function properly. Under current medical practice, the need for re-programming only becomes apparent upon careful examination of the patient in a clinical setting. These follow-up sessions, however, may not be conducted frequently enough to ensure proper operation of the pacemaker between such sessions.
Other problems may arise at the proximal lead end that is placed into the lead connector assembly and electrically connected via a “screw” or other connective means during implant. Due to improper connection during implant, the pacing signal may become intermittently or continuously disrupted, resulting in a high impedance or open circuit. Alternatively, the lead's distal end may become dislodged from cardiac tissue, resulting in intermittent or continuous LOC in one or both chambers. “Lead penetration” may occur during implantation when the distal end of the lead is advanced too far and protrudes through the myocardium. “Exit block”, though rare, may occur due to inflammation of the cardiac tissue in contact with the distal electrode surface. The inflammation reaches such a level that either total LOC and/or LOS occurs.
When these lead problems manifest themselves, it is necessary for the clinician to diagnose the nature of the lead related condition from the available data, IMD test routines, and patient symptoms. Once diagnosed, the clinician must take corrective action, for example, reprogram to unipolar polarity, open the pocket to replace the lead, reposition the electrodes or sensors, or tighten the proximal connection.
Certain IMDs, that have been clinically used or proposed, rely on lead-borne physiologic sensors that monitor physiologic conditions, for example, without limitation, blood pressure, temperature, pH, and blood gases. The operation of these sensors also depends on the integrity of the leads to which they are connected.
Lead impedance data and other parameter data, for example, without limitation, battery voltage, switching from bipolar to unipolar configuration, error counts, and LOC/LOS data, may be compiled and displayed on a programmer screen and/or printed out for analysis by the clinician. The clinician may also undertake real time IMD parameter reprogramming and testing while observing the monitored surface ECG to try to pinpoint a suspected lead related condition that is indicated by the data and/or patient and/or device symptoms.
Several approaches have been suggested to provide physicians with information and/or early detection or prevention of these lead-related conditions. Commonly assigned U.S. Pat. No. 5,861,012 (Stroebel), incorporated herein by reference, describes several approaches to automatically determine the pacing threshold. Periodically, a pacing threshold test is conducted wherein the pacing pulse width and amplitude are reduced to determine chronaxie and rheobase values to capture the heart. These threshold test data are stored in memory, and used to calculate a “safety margin” to ensure capture.
Certain external programmers that address the analysis of such data and symptoms include those disclosed in the following U.S. Pat. Nos.: 4,825,869 (Sasmor et al.); 5,660,183 (Chiang et al.); and 5,891,179 (ER et al.), all incorporated herein by reference. The '869 patent describes processing a variety of uplinked, telemetered atrial and ventricular EGM data, stored parameter and event data, and the surface ECG in rule-based algorithms for determining various IPG and lead malfunctions. The '183 patent also considers patient symptoms in an interactive probability based expert system that compares data and patient systems to stored diagnostic rules, relating symptoms to etiologies so as to develop a prognosis. The '179 patent discloses a programmer that can be operated to provide a kind of time-varying display of lead impedance values in relation to upper and lower impedance limits. The lead impedance values are derived from pacing output pulse current and voltage values. These values are then either measured and stored in the IPG memory from an earlier time or represent current, real-time values that are telemetered to the programmer for processing and display.
Prior art detection of lead-related conditions and various IPG responses to such detection are set forth in the following U.S. Pat. Nos.: 4,140,131 (Dutcher et al.); 4,549,548 (Wittkampf et al.); 4,606,349 (Livingston et al.); 4,899,750 (Ekwall); 5,003,975 (Hafelfinger et al.); 5,137,021 (Wayne et al.); 5,156,149 (Hudrlik); 5,184,614 (Collins); 5,201,808 (Steinhaus et al.); 5,201,865 (Kuehn); 5,224,475 (Berg et al.); 5,344,430 (Berg et al.); 5,350,410 (Kieks et al.); 5,431,692 (Hansen et al.); 5,453,468 (Williams et al.); 5,507,786 (Morgan et al.); 5,534,018 (Walhstrand et al.)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Implantable lead functional status monitor and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Implantable lead functional status monitor and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implantable lead functional status monitor and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3186805

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.