Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2001-07-11
2002-11-05
Getzow, Scott M. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
Reexamination Certificate
active
06477418
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to implantable cardiac stimulation devices.
BACKGROUND OF THE INVENTION
It is the function of a pacemaker to provide electrical stimulation pulses to the appropriate chamber(s) of the heart (atria or ventricles) in the event that the heart is unable to beat of its own (i.e., in the event that either the sinoatrial node fails to generate its own natural stimulation pulses at an appropriate sinus rate, or in the event such natural stimulation pulses do not effectively propagate to the appropriate cardiac tissue). Most modern pacemakers accomplish this function by operating in a “demand” mode where stimulation pulses from the pacemaker are provided to the heart only when the heart is not beating of its own, as sensed by monitoring the appropriate chamber of the heart for the occurrence of a P-wave or R-wave. If a P-wave or a R-wave is not sensed within a prescribed period of time (which period of time is usually referred to as the “escape interval”), then a stimulation pulse is generated at the end of this prescribed period of time and delivered to the appropriate heart chamber via a pacemaker lead.
Modem pacemakers are generally of two types: i) single chamber pacemakers and ii) dual chamber pacemakers. In a single chamber pacemaker, the pacemaker provides stimulation pulses to, and senses cardiac activity within, a single chamber of the heart (either the right ventricle or the right atrium). In a dual chamber pacemaker, the pacemaker provides stimulation pulses to, and senses cardiac activity within, two chambers of the heart (e.g., both the right atrium and the right ventricle).
One of the most versatile programmable pacemakers available today is the DDDR pacemaker. This pacemaker represents a fully automatic pacemaker, which is capable of sensing and pacing both the atrium and the ventricle, and is also capable of adjusting the pacing rate based on one or more physiological parameters such as minute ventilation, heart contractility, QT interval and/or mechanical parameters such as activity and body acceleration.
Unfortunately, in some instances, a given patient may develop fast atrial rhythms which result from a pathologic arrhythmia such as supraventricular tachycardia, fibrillation or flutter. In these cases, patients who require DDD/DDDR pacing are limited by the potential for rapid ventricular pacing due to tracking of the atrium rhythm.
As these patients require atrioventricular synchrony during periods of sinus rhythm, attempts have been made in the art to prevent undesirable tracking of pathologic atrial arrhythmias by automatically switching the pacemaker's mode of operation from an atrial tracking pacing mode to a non atrial tracking pacing mode.
Thus it would be desirable for the pacemaker to switch the pacing mode from an atrial tracking mode to a non atrial tracking mode only if a pathologic supraventricular arrhythmia is detected, thus avoiding repetitive mode switching based on fluctuations in the sensed atrial rate.
A variety of mode-switch algorithms have been developed to avoid inappropriate tracking of atrial arrhythmias and to provide tracking of the sinus node at all other times. The mode-switch algorithm differs from manufacturer to manufacturer and, at least at present, this is confusingly given different names, e.g., automatic mode-switching (AMS), or Atrial Tracking Response (ATR). Basically, these algorithms enable the pacemaker to change the mode of response to atrial sensed events from a tracking DDD(R) to a non tracking mode (VVI(R) or DDI(R)), when the intrinsic or average atrial rate exceeds a programmed switch rate.
One of the earliest mode switching devices, described in “Dual-demand pacing for refractory atrioventricular re-entry tachycardia” (Curry et al., PACE, Vol.2 (2), 1979, pp.137-151), was designed to pace at a fixed rate of 70 beats per minute, when sensed heart rates were either below this rate or above 150 beats per minute.
Typically, the threshold switch rate at which switching occurs is entered during programming of the pacemaker upon installation and remains fixed thereafter. This mode switching criterion may cause problems for patients who exhibit normal sinus tachycardia due to physical activity or emotional stress. Another difficulty associated with previous techniques is that mode switching occasionally occurred due to a single premature atrial contraction or fluctuations of atrial rhythm.
In the above instances, rates slightly exceeding the programmed switch rate are not indicative of a supraventricular arrhythmia. These patients may thus be subjected to undesirably frequent mode switching occurrences as their atrial rates slightly exceed and then drop below the programmed switch rate.
Consequently, algorithms have been developed for switching pacing modes which have the capability of determining an atrial rate representative of the actual atrial activity to enhance the chances of a correct detection of an atrial arrhythmia, thus avoiding a response based on a single premature atrial contraction or fluctuations of atrial rhythm above the programmed switch rate.
In U.S. Pat. No. 5,144,949, a dual chamber pacemaker is described with automatic mode switching between the DDD mode, the VVIR mode and DDDIR mode, based on the difference between the average sensor rate and the average atrial rate; whenever the sensor rate and the atrial rate are too different and the difference exceeds a programmable function of the two rates, the mode is switched to VVIR to avoid tracking high atrial rates.
In U.S. Pat. No. 5,549,649, a pacemaker is disclosed using a filtered atrial rate (FAR) as a basis for mode switching in order to reduce mode switching responses due, for example, to a single premature atrial contraction or fluctuations in the atrial activity. The FAR is obtained using a rate smoothing filter, which during each cycle limits the amount by which the FAR may change from cycle to cycle. This is accomplished by increasing the FAR by a programmable high rate factor when the intrinsic atrial rate increases, and by decreasing the FAR by a programmable low rate factor when the intrinsic atrial rate decreases.
The optimal use of mode switching was however found to be enhanced by allowing some variability in the programmed threshold mode switch rate on the basis of either new algorithms or measured values of sensed parameters. For these reasons, it is sometimes desired to provide pacemakers that can be programmed with a mode switching threshold rate calculating algorithm.
For example, U.S. Pat. No. 5,579,200 describes an algorithm for calculating the mode switch threshold rate as a function of the programmed base pacing rate. Because the base rate is typically a non-linear function of activity level, the threshold switching rate is also non linear and dependent on the activity level. The threshold switching rate can be equal to the base pacing rate plus a constant or can be some other, more complex function of the base pacing rate and/or activity level.
U.S. Pat. No. 5,713,928 discloses an algorithm to detect atrial arrhythmias, using a first window of atrial acceleration detection, whose duration is a function of the preceding atrial rhythm, for determined rapid atrial rhythm and a second window (Atrial Escape Interval) for a determined slow atrial rhythm, which allows the discrimination between atrial extrasystoles and physiological accelerations of the atrial rhythm.
U.S. Pat. Nos. 5,247,930 and 5,531,771 define a method for determining a so-called physiological rate, as a function of sensed atrial rate, and means for defining a range of atrial rates, the so-called physiological band, relative to and varying with the physiological rate.
As described in “Mode Switching for Atrial Tachyarrhythmias” (Sutton et al., American Journal of Cardiology Vol. 83, 1999, pp. 202D-210D), such mode switching features have been implemented in the pacemakers sold under the trade names Diamond II DDDR, Ruby II DDD and Saphir II VDDR by Vitatron Medical B. V., K I Dierén, the Netherlands.
In such de
Gaggini Guido
Garberoglio Bruno
Marcelli Emanuela
Plicchi Gianni
Silvestri Luigi
Getzow Scott M.
Popovich & Wiles, P.A.
Sorin Biomedica Cardio CRM S.r.l.
LandOfFree
Implantable heart stimulation system with automatic mode... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Implantable heart stimulation system with automatic mode..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implantable heart stimulation system with automatic mode... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2990062