Surgery – Surgically implanted vibratory hearing aid
Reexamination Certificate
2001-11-20
2003-03-25
Winakur, Eric F. (Department: 3736)
Surgery
Surgically implanted vibratory hearing aid
Reexamination Certificate
active
06537201
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of implantable hearing aid devices, and more specifically to the sealing of implantable hearing aid componentry housings and interconnections therebetween. The invention is particularly apt for use in conjunction with implantable hearing aid actuator bellows.
BACKGROUND OF THE INVENTION
Implantable hearing aid systems entail the subcutaneous positioning of various componentry on or within a patient's skull, typically at locations proximal to the mastoid process. Such componentry typically includes a receiver for receiving transcutaneous RF and/or acoustic signals and an interconnected processor to provide processed signals. Additionally, some form of actuator is employed to utilize the processed signals to stimulate the ossicular chain and/or tympanic membrane within the middle ear of a patient.
By way of example, one type of implantable actuator comprises an electromechanical transducer having a vibratory member positioned to mechanically stimulate the ossicular chain via axial vibrations. (see e.g., U.S. Pat. No. 5,702,342). In another approach, implanted excitation coils may be employed to electromagnetically stimulate magnets affixed within the middle ear. Additional implantable componentry may include one or more power storage components and associated recharging componentry. Components of the above-noted nature may be utilized in either semi-implantable systems which utilize additional external mounted componentry (e.g. microphones and transmitters located in behind-the-ear units) and fully-implantable systems which do not employ external componentry during normal usage.
As may be appreciated, reliable operation of implanted hearing aid componentry is extremely important to the long term viability and widespread utilization of implanted hearing aid systems. Such reliability is key from the perspective of not only achieving ongoing enhanced hearing, but additionally due to the high costs associated with surgical procedures attendant to the servicing/repair of implanted components.
In conjunction with achieving high reliability, the need to isolate implanted componentry from bodily fluids has been recognized (see e.g. U.S. Pat. No. 5,282,858). While significant advances have been made to enclose implanted componentry in sealed housings, the present inventors have devised further improved techniques to realize enhanced sealing in implantable hearing aid systems. Such techniques include the capability to achieve reliable sealing while allowing for relative movement between mechanically interconnected hearing aid componentry. In the later regard, the inventive techniques are particularly well-suited for implementation in implanted hearing aid systems that include a bellows to facilitate axial vibration of a vibratory member of an electromechanical transducer actuator.
SUMMARY OF THE INVENTION
In view of the foregoing, a general objective of the present invention is to provide an implantable hearing aid apparatus with improved sealing, thereby yielding enhanced reliability.
A further objective of the present invention is to provide an improved implantable hearing aid while maintaining or even reducing overall mass and complexity.
Another objective of the present invention is to provide an improved implantable hearing aid that can be produced in a highly consistent manner.
Yet a further objective of the present invention is to provide an improved implantable hearing aid apparatus that accommodates relative movement between implanted housing members while enhancing the sealing therebetween.
In relation to realizing the above-identified objectives, the present inventors have recognized that significant advances are achievable through the utilization of electrodeposition techniques. Specifically, it has been recognized that electrodeposition may be advantageously utilized to both sealably interconnect implanted hearing aid componentry housing members and in the fabrication of multi-layered implanted hearing aid housing members.
Based on such recognition, and in one aspect of the present invention, an implantable hearing aid apparatus is provided that comprises first and second implantable hearing aid component housing members, and at least one electrodeposited layer overlapping adjacent portions of the first and second housing members to provide an interconnection and hermetic seal therebetween. Preferably, the outer electrodeposited layer may comprise a biocompatible first material, such as a biocompatible metal selected from a first metals group consisting of gold, platinum and titanium.
In conjunction with this inventive aspect, an outer electrodeposited layer and a conformal underlying electrodeposited layer may be provided, wherein the outer layer comprises a first material that is different than a second material comprising the underlying layer. Preferably, the outer layer hermetically seals the underlying layer. Further, the underlying layer may be provided to have at least one of a modulus of elasticity, tensile strength and yield strength that is at least two times greater than that of the electrodeposited outer layer. By way of primary example, the underlying electrodeposited layer may comprise a second material selected from a second metals group consisting of nickel, iron, chromium, platinum, iridium, copper and aluminum. Such an arrangement may be of benefit where a degree of relative movement between the housing members is desired.
In addition to an outer layer and underlying layer, a conformal inner electrodeposited layer may also be provided to hermetically seal the underlying layer between the outer layer and inner layer. As with the outer layer, the inner layer may comprise a biocompatible metal selected from the noted first metals group.
Of note, the first and second housing members may be advantageously configured to define a substantially flush interface region therebetween. Further, the electrodeposited layers(s) overlapping the interface region may be provided to be substantially, continuously arcuate and/or flat. By way of example, opposing ends of tubular first and second cylindrical housing members may be disposed in abutting relation, wherein one or more electrodeposited layer(s) is disposed across and about the abutting ends of the first and second housing members.
In one embodiment, one of the first and second housing members may be in the form of a hollow bellows employed in an electromechanical transducer actuator with a vibratory member extending therethrough. The hollow bellows may comprise a plurality of undulations which allow the bellows to respond in an accordion-like fashion to axial vibrations imparted to one end thereof (e.g. via mechanical interconnection with the vibratory member). In such embodiment, the other one of the first and second housing members may be in the form of a sleeve member that is interconnected to one of an electromechanical transducer housing or to a distal end of the vibratory member that extends from the electromechanical transducer housing and through the hollow bellows and other housing member. Such sleeve member may advantageously comprise a biocompatible metal selected from the noted first metals group.
In another aspect of the present invention, an improved implantable hearing aid apparatus is provided that comprises first and second implantable hearing aid component housing members and a third implantable hearing aid component housing member interconnected therebetween. Specifically, the third housing member may be connected at a proximal end to the first housing member and at a distal end to the second housing member. Of importance, the third housing member may advantageously comprise a plurality of electrodeposited layers, wherein at least two adjacent ones of the plurality of electrodeposited layers comprise differing materials.
Preferably, an outer electrodeposited layer of the third housing member comprises a biocompatible material which substantially covers and thereby hermetically seals an underlying layer. Again, the underlying laye
Bedoya Jose H.
Easter James Roy
Kasic, II James Frank
Miller Douglas Alan
Marsh & Fischmann & Breyfogle LLP
Otologics LLC
Veniaminov Nikita R
Winakur Eric F.
LandOfFree
Implantable hearing aid with improved sealing does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Implantable hearing aid with improved sealing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implantable hearing aid with improved sealing will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3079980