Implantable epicardial electrode

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S132000, C607S033000

Reexamination Certificate

active

06266567

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to a body implantable system, and more particularly to an indwelling intramyocardial pacing and sensing electrode with wireless communication capabilities.
BACKGROUND OF THE INVENTION
Temporary bipolar epicardial atrial and ventricular pacing wires are routinely placed after major cardiac surgical procedures. Transitory changes in heart rate and rhythms following cardiac surgery are common and include sinus bradycardia, junctional rhythms, and atrioventricular heart blocks. Sinus bradycardia responds to simple atrial pacing in the range of 90-110 beats/minute. In contrast, atrioventricular blocks require both atrial and ventricular pacing to normalize atrioventricular synchrony. In fact, synchronization of atrial and ventricular contractions through the maintenance of normal sinus rhythm in the postoperative setting may account for up to 25% of the cardiac output. Tachyarrythnias are the most frequent arrythmia occurring postoperatively in some form in up to 64% of cardiac surgery patients. These fast rhythms are very detrimental and may result in atrioventricular dyssynchrony and thus, inefficient cardiac output. Overdrive atrial and atrioventricular pacing at a rate faster than the patient's spontaneous sinus rate usually suppresses paroxysmal atrial tachycardia. Atrial flutter can be interrupted through entrainment with atrial pacing at a rate slightly greater than the atrial flutter rate to recapture the atria. Following recapture, termination of the pacing is usually followed by a return to normal sinus rhythm. Rapid atrial stimulation (pacing) at rates up to 600 beats per minute for periods of less than one second may also be used in cases of atrial flutter to interrupt the flutter cycle. In some cases, atrial fibrillation, the most common postoperative supraventricular arrhythmia following cardiac surgery can also be converted using entrainment or rapid atrial pacing.
Postoperative ventricular tachyarrhythmias are potentially fatal. Differentiating ventricular tachycardia from sinus tachycardia with a bundle branch block or a supraventricular tachyarrythmia with aberrant conduction may be difficult. Direct recording from the epicardial atrial and ventricular bipolar pacing electrodes can lead to the definitive diagnosis which will direct the manner of treatment and prevent possible complications from inadvertent treatment.
Temporary atrial or atrioventricular pacing may decrease the need for inotropic support in the immediate postoperative period. Temporary pacing may be required for up to 48 hours for treatment of postoperative bradyarrhythmias. Routinely, most epicardial leads are left in place for up to 96 to 120 hours. Indwelling epicardial leads are potential sources for infection and may result in the development of mediastinitis. Mediastinitis can occur in up to 2% of postoperative cardiac surgery patients. Wound exploration, debridement, and surgical drainage are often required to treat this serious postoperative complication. At the time of removal, these epicardial leads, which are sewn into the myocardium, are pulled out with manual traction potentially resulting in further patient morbidity.
The current invention attempts to eliminate these problems of infection and lead removal by placing an implantable small pacing electrode within the myocardium that does not require removal and is operated via radio frequency.
SUMMARY OF THE INVENTION
The present invention disclosed and claimed herein comprises an implantable medical device for implanting in tissue. An anode device is provided for conductively interfacing with the tissue as well as a cathode device for conductively interfacing with the tissue. A support structure supports the anode and cathode a predetermined distance apart. A processing system is disposed between the anode and the cathode for interfacing with the anode and the cathode devices, wherein the anode and the cathode devices allow the processing system to interface with the tissue to perform predetermined functions in association therewith.
In another aspect of the invention, the processing system is operable to sense a voltage between the anode and the cathode as the predetermined functions. The processing system is also operable to generate a voltage across the anode and the cathode as the predetermined functions. The voltage is generated for a predetermined duration of time and at predetermined intervals.
In a further aspect of the invention, the processing system further includes a communication device with a receiver for communicating with a remote system external to the tissue for receiving information therefrom. The communication system includes a transmitter and is operable to transmit data from the processing system to the remote system. The processing system has associated therewith a power supply system, the power supply system having associated therewith a storage capacitor. The communication system is operable to receive an external signal for inductively coupling power across the tissue to the power supply system for storage of energy in the capacitor, the processing system powered by the power supply system and the energy stored in the power supply capacitor.
In a yet further aspect of the present the processing system includes a memory for containing a predetermined ID therein unique to the medical device and the transmitter is operable to transmit said ID to the remote system.


REFERENCES:
patent: 4256115 (1981-03-01), Bilitch
patent: 5312439 (1994-05-01), Loeb
patent: 5405367 (1995-04-01), Schulman et al.
patent: 5725559 (1998-03-01), Alt et al.
patent: 5792208 (1998-08-01), Gray

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Implantable epicardial electrode does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Implantable epicardial electrode, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implantable epicardial electrode will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2553340

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.