Impingement oven airflow devices and methods

Electric heating – Heating devices – Combined with container – enclosure – or support for material...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S388000, C099S476000, C099S477000, C126S02100R

Reexamination Certificate

active

06320165

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to improving airflow in heat and mass transfer processes such as baking, freezing or drying and, more particularly, to improving impingement airflow by way of air fluctuation, increased airflow uniformity, and enhanced control of airflow. Embodiments of the invention are particularly applicable to use with ovens designed for baking pizza, especially restaurant ovens that can utilize the limited space available more efficiently and operate more quietly for a more compatible working environment.
2. Description of Related Art
Impingement processing that achieves heat and mass transfer modification of products is particularly attractive because impinging jets of air disrupt the layers of stagnant gas surrounding the surface of a product, thus increasing convection heat and mass transfer. The latter may also be increased by: vibration and pulsation of sound waves, rifling of air jets to be more cylindrical and less conical, rotating a jet about its axis, or swirling an air jet. See Huang, L. et al, “Heat Transfer and Flow Visualization Experiments of Swirling, Multi-Channel, and Conventional Impinging Jets,”
Int. J. Heat Mass Transfer
, Vol. 41, No.3, pp.583-600 (1998), incorporated herein by reference, and placing a return air duct adjacent to air jet nozzles to make the jets more effective as described with respect to
FIG. 1
of U.K. Patent No. 914,546, also incorporated herein by reference.
Many impingement ovens, for example, are hampered by a lack of uniformity of airflow due to design limitations. Nonuniform impingement airflow can cause irregularities within the oven, within baked products and between products being cooked at the same time. For example, the right-hand side of a pizza may be more baked than the left-hand side in some instances of nonuniform airflow, or identical raw pizzas may be baked to differing degrees in different zones of the same oven. Three important types of nonuniformity that adversely affect heat and mass transfer are: (1) differences in absolute air velocity at different nozzles due to irregular air flow into and out of the plenum chambers; (2) discharge of air from the nozzles in a non-perpendicular orientation to the surface of the heat and mass transfer modified product; and (3) tendency of the air jets to fan out into a widening cone more quickly than desired.
Past heat and mass transfer impingement devices have attempted to compensate for some of these deficiencies by passing air through long, thin, straight pipes which can impart a rifling effect to the discharged air. Air flowing through the pipes meets resistance to flow and experiences a pressure differential across the pipes. Expanding the pipe length aids in equilibrating the discharged air flowing from the pipes. Such processing equipment, however, tends to be very large and requires pipe lengths ranging from about 50-60 centimeters with pipe diameters of approximately two centimeters.
Impinging jets of gas in an oven can be expelled through nozzles in pipes through which gasflows under pressure, as described in U.K. Patent No. 985,443, incorporated herein by reference. Also, a high velocity jet of gas, so propelled, can be used to propel the flow of other gases by applying the Venturi effect, as exemplified by Newberry, Desmond, “Vacuum Cooling,” in
Proceedings of
72
nd
Annual Conference of the American Society of Bakery Engineers
, Chicago, Ill., pp. 81-86, (March 1996), incorporated herein by reference. In both cases, airflow can be quieter and better controlled than with the use of plenum chambers into which air is propelled with the help of large fans and large air-circulation chambers. This is because the propulsion of gas under pressure can be regulated more conveniently by the adjustment of a valve opening than by the modulation of fan speed, without the inherent complexities of aerodynamic airflow within large chambers and the noise of the fan and said airflow within said chambers. Accordingly, an impingement system that uses compressed air in pipes with nozzles, or uses air propelled by the Venturi mechanism, promises to be quieter, more compact, and more easily controlled than circulating air with fans into plenum chambers.
One particular shortcoming of the prior art that is addressed by embodiments of the invention is the inability to employ impingement processing more effectively in applications where it is desirable to cook a baked product, such as pizza, traveling through the oven on a conveyor belt within the limiting space constraints of a restaurant kitchen. Even in those instances where a conveyor belt is used, only a single rack per oven would be feasible because of the blocking that would occur between vertically spaced baked products in typical ovens. Examples of ovens utilizing single-layer conveyor belts for cooking can be found in Ovadia, David Z., et al., “Impingement in Food Processing,”
Food Technology
, Vol. 52, No.4, pp. 46-50 (April 1998), incorporated herein by reference.
SUMMARY OF THE INVENTION
Embodiments of the present invention are contemplated for use in situations wherein heat and mass transfer modified product, such as individual-sized pizzas, are to be prepared in relatively short periods of time, for example in one to five minutes. Through e.g. structural design features and air manipulation, embodiments of the invention provide distinct advantages over the prior art, including improving quality control by increasing uniformity of heating across the oven and within each particular product, decreasing required baking time by increasing the effectiveness of impinging air jets through air pulsation and fluctuation, and maintaining uniformity of air flow to contact the baked product substantially perpendicular to its surface. Also, the use of tubes, or pipes possessing impingement nozzles described in the following, permits the use of compressed air instead of fans and the implementation of related advantages, permitting more compact oven design, better control of air jet parameters, and quieter oven operation, for example.
To overcome disadvantages of the prior art, embodiments of the invention utilize multiple short, thin, straight pipes to effect a columnar airflow which strikes perpendicularly to the surface of the heat and transfer modified product. The pipes are configured to achieve a predetermined ratio of length to diameter and desired pressure differentials across the respective pipes. A multiplicity of smaller adjacent pipes is used to facilitate a compact oven, while maintaining the appropriate length-to-diameter ratio necessary for the rifling of impinging jets. While said smaller pipes may be straight, they may also be spiraled to create swirled jet flow. Alternatively, pipes of substantially equal total length are configured to effect heating wherein one or a set of the pipes are folded back upon themselves or otherwise configured to facilitate a compact-sized heat and mass transfer processing device, such as an oven.
In another embodiment, variations in air fluctuation are effected with a shutter, flap, or other mechanism used to alternately route air through airflow conduits to different plenums or areas within the processing chamber to improve and accelerate heat and mass transfer. In one embodiment, a solenoid is employed to alternately open and close two channels through which air is alternately directed. In a further embodiment, a low-frequency whistle mechanism is placed opposite the flow of air being channeled into the processing cavity, but proximal to the plenums or other areas within the processing chamber to create low-frequency air vibration, thereby causing increased fluctuation in the airflow.
Although embodiments of the invention are especially well-suited to preparation of individual-sized pizzas, the invention is not limited to these embodiments. Larger pizzas, other pizza-type and pizza-related food products, and other food and non-food products (e.g., drying paper, textiles, wood and curing electronic circuit boards, etc.)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Impingement oven airflow devices and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Impingement oven airflow devices and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Impingement oven airflow devices and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2587504

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.