Impact energy absorbing structure in upper portion of motor...

Land vehicles: bodies and tops – Bodies – Body shell

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C296S039100, C280S751000, C280S752000

Reexamination Certificate

active

06315350

ABSTRACT:

INCORPORATION BY REFERENCE
The disclosure of Japanese Patent Application No. HEI 11-7367 filed on Jan. 14, 1999 including the specification, drawings and abstract is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an impact energy absorbing structure in an upper portion of a motor vehicle body and, more particularly, to a structure for absorbing an impact energy in an upper portion of a body of a passenger car.
2. Description of the Related Art
U.S. Pat. No. 5,762,392, as for example, proposes an impact energy absorbing structure wherein an energy absorbing interval (space) is formed between an inner panel of a structural member of a vehicle body and an interior member that covers a compartment side of the inner panel and wherein a grating-like energy absorbing body having one or more longitudinal ribs and transverse ribs that are more in number than the longitudinal rib or ribs is disposed within the energy absorbing interval.
In a case where the aforementioned structural member is a roof side rail, the interval space between the roof side rail and a roof lining, that is, an interior member disposed inwardly of the roof side rail, is formed so that the interval distance therebetween gradually decreases from an upper portion of the interval space toward a lower portion thereof (outward in the directions of a vehicle body width), based on a need to ensure easy entrance into the compartment and easy exit therefrom and a need to secure a sufficient clearance between the roof lining and the head of an occupant (head clearance) As a result, the amount of displacement of the energy absorbing body allowed near a lower end of the roof side rail becomes small, so that the amount of energy absorbed by the energy absorbing body becomes less when an impact load occurs near the lower end of the roof side rail than when an equal impact load occurs on an upper portion of the roof side rail. Therefore, in order to ensure that a sufficient amount of energy will be absorbed, it is necessary to increase the interval between the roof side rail and the roof lining. However, this gives rise to problems of a reduction of the ease of entrance and exit and a reduction of the head clearance.
Furthermore, in the case of a front pillar, as for example, the interval distance between the front pillar and a pillar garnish is shorter in a portion near a flange joint portion between an inner panel and an outer panel of the front pillar than in a portion remote from the flange joint portion. Due to circumstances similar to those mentioned above, problems of a reduction of the ease of entrance and exit and a reduction of the visibility arise.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the invention to provide an impact energy absorbing structure in an upper portion of a motor vehicle body which structure compensates for a reduced amount of energy absorbable by the structure resulting from variation in the interval distance between a structural member, such as a roof side rail, a front pillar, other pillars or the like, and an interior member disposed at a compartment side of the structural member.
In accordance with one aspect of the invention, an impact energy absorbing structure in an upper portion of a motor vehicle body includes a roof side rail extending in a front-rear direction with respect to the motor vehicle body, a roof lining disposed at a compartment side of the roof side rail and spaced from the roof side rail by an interval, and a resin-made energy absorbing body disposed in the interval.
The energy absorbing body has at least three longitudinal ribs that extend substantially in the front-rear direction and transverse ribs that are more in number than the at least three longitudinal ribs and that extend substantially in a such direction as to intersect with the longitudinal ribs. The at least three longitudinal ribs are formed so as to compensate for a reduced amount of displacement that is allowed for a longitudinal rib for a purpose of energy absorption in a section of the energy absorbing body taken on an imaginary plane extending along at least one of the transverse ribs, by varying at least one of a pitch between two longitudinal ribs provided adjacent to each other in the section, an angle formed by each longitudinal rib with respect to an imaginary horizontal plane in the section, and a thickness of each longitudinal rib.
Since the at least three longitudinal ribs of the energy absorbing body are formed so as to compensate for a reduced amount of displacement that is allowed for a longitudinal rib, the peak value of reaction load produced by a portion of the energy absorbing body where a relatively small amount of displacement is allowed to occur at the time of application of an impact load is increased, so that the small-displacement portion is able to absorb a predetermined amount of impact energy. In a portion of the energy absorbing body where a relatively large amount of displacement is allowed to occur, the peak value of reaction load produced by the portion is kept at a low level, so that the large-displacement portion is also able to absorb the predetermined amount of impact energy.
This impact energy absorbing structure of the invention is intended to change the load-displacement energy absorbing characteristic of the energy absorbing body in order to secure a predetermined energy absorbing ability at any site in the energy absorbing body by varying at least one of the pitch between two adjacent longitudinal ribs, the angle formed by each longitudinal rib with respect to an imaginary horizontal plane, and the thickness of each longitudinal rib. The invention does not complicate the construction of the energy absorbing body.
In accordance with another aspect of the invention, an impact energy absorbing structure in an upper portion of a motor vehicle body includes a roof side rail extending in a front-rear direction with respect to the motor vehicle body, a roof lining disposed at a compartment side of the roof side rail and spaced from the roof side rail by an interval, and a resin-made energy absorbing body disposed in the interval. The energy absorbing body has at least three longitudinal ribs that extend substantially in the front-rear direction and transverse ribs that are more in number than the at least three longitudinal ribs and that extend substantially in such a direction as to intersect with the longitudinal ribs. The at least three longitudinal ribs are arranged so that a pitch between two longitudinal ribs provided adjacent to each other in a section of the energy absorbing body taken on an imaginary plane extending along at least one of the transverse ribs is smaller if an amount of displacement that is allowed for the two longitudinal ribs for a purpose of energy absorption in the section is smaller.
If the number of longitudinal ribs provided is, for example, three, the pitches between the longitudinal ribs are set so that the pitch between the longitudinal rib provided at the uppermost position in the aforementioned section and the longitudinal rib provided at the intermediate position is larger than the pitch between the longitudinal rib provided at the intermediate position and the longitudinal rib provided at the lowermost position. In this case, taking the magnitude of impact load into account, the pitches may be set so that when an impact load acts toward the uppermost longitudinal rib, the uppermost longitudinal rib first deforms and, immediately before substantially complete crush of the uppermost longitudinal rib, the intermediate longitudinal rib starts to deform, and so that when an impact load acts toward the intermediate longitudinal rib, the intermediate longitudinal rib first deforms and, at the time of a certain progress of the deformation of the intermediate longitudinal rib, the lowermost longitudinal rib starts to deform.
Therefore, when an impact load acts toward the longitudinal rib provided at the uppermost position, the uppermost longitudin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Impact energy absorbing structure in upper portion of motor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Impact energy absorbing structure in upper portion of motor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Impact energy absorbing structure in upper portion of motor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2610711

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.