Impact damping member for motor vehicles

Vehicle fenders – Buffer or bumper type – Bumper having impact force absorbing means directly...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C293S133000, C293S155000

Reexamination Certificate

active

06299227

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to an impact damping member for motor vehicles arranged as a safety member between the bumper element and the frame of the motor vehicle. The impact damping member absorbs energy by deformation during a collision of the motor vehicle with an obstacle.
2. Description of the Related Art
A prior art impact damping member for motor vehicles is disclosed in German patent document 298 08 143 U1. It is arranged as a safety member between a bumper element and the frame of the motor vehicle and is comprised of an extruded inner profiled member supported inside an outer tube. The outer tube and the inner profiled member deform upon impact to thereby absorb the impact energy. A portion of the length of the impact damping member has a truss structure and is thus relatively rigid. Furthermore, the holding device for attachment to the bumper element is designed for only a certain type of bumper element.
The primary objective of providing a motor vehicle with bumper elements and impact damping members is to protect the passengers in the vehicle and to prevent damage to the frame in order to avoid expensive repairs of the vehicle. It is essential in this context to design the impact damping member in a way that is beneficial with regard to production engineering aspects and such that it is as light as possible, while fulfilling certain minimum requirements with regard to its energy absorption capacity.
A lightweight construction results in a reduction of fuel consumption and accompanying pollutant emissions. At the same time, the impact damping members must have sufficient stability with regard to safety-technological aspects in order to ensure the required buckle resistance in the longitudinal direction. The weight reduction thus has limits within which the material and construction parameters can be adjusted.
SUMMARY OF THE INVENTION
It is an object of the present invention to improve an impact damping member with respect to its energy absorption capacity and its weight and to further develop it with respect to its mounting technology.
In accordance with the present invention, this is achieved in that the impact damping member is provided with an inner profiled member which is supported in an outer tube and is comprised of several hollow bodies connected to one another and each having a longitudinal axis extending transversely to the outer tube, wherein the hollow body adjacent to the bumper element is penetrated by a coupling member connected to the bumper element.
Accordingly, the inner profiled member is characterized by having multiple hollow bodies connected to one another and the hollow body next to the bumper element being penetrated by a coupling member which is connected to the bumper element.
The hollow members of the inner profiled member have longitudinal axes which extend transversely to the longitudinal extension of the outer tube and are adjustable with respect to the configurational conditions such as, for example, the inner diameter of the outer tube, in an efficient and inexpensive manner by tailoring them accordingly. Essential for the configuration of an impact damping member is also a sufficient buckle resistance. This can be realized according to the inventive solution in that the inner profiled member is supported positive-lockingly within the outer tube. This results in an advantageous cooperation of these components.
Preferably, the hollow bodies have large hollow spaces so that the impact damping member has a correspondingly long deformation stroke and a large amount of impact energy can be transformed into deformation energy. Large hollow spaces provide for an especially soft deformation of the impact damping member. This advantageously provides protection already in a collision occurring at low speed.
The hollow bodies are connected to one another wherein one or more stays between neighboring hollow bodies may be provided. Technically especially beneficial is a stay which is arranged in the longitudinal center plane of the inner profiled member in which also the longitudinal axes of the hollow bodies are positioned. The mutual connection of the hollow bodies of the inner profiled member results in a fixed composite structure which is able to receive great transverse forces acting on the impact damping member by functional cooperation with the outer tube. An advantageous production engineering process for the inner profiled member is cutting to length an extruded profiled member blank.
The impact damping member is connected to the bumper element by a coupling member which penetrates the hollow body of the inner profiled member next to the bumper element. This feature realizes an especially simple attachment to the bumper element. Moreover, since the coupling member penetrates a hollow body of the inner profiled member, the hollow body and the inner profiled member are automatically position-oriented within the outer tube. Additional fastening elements for fixation of the inner profiled member are not required. The coupling member can be sized such that it penetrates the hollow body at least over portions thereof in a positive-locking manner so that introduced impact forces are transmitted optimally onto the inner profiled member.
An outer tube in the context of the invention means elongate hollow profiled members which have a hollow space for receiving the energy-absorbing inner profiled member. Suitable as an outer tube are also profiled members produced by stamped monocoque construction.
The coupling member can penetrate also the outer profiled member for positional fixation of the inner profiled member. For this purpose, the outer tube has penetrations which are matched to the cross-section of the coupling member so that attack forces are advantageously directly transmitted from the coupling member onto the outer tube. The outer tube preferably has a rectangular cross-section.
According to another preferred embodiment, the bumper element is connected to the impact damping member by at least one threaded bolt extending in the longitudinal direction of the coupling member. It is possible to screw one threaded bolt into each end face of the coupling member. However, it is also possible to provide a longer threaded bolt which penetrates the entire length of the coupling member. Corresponding through bores are then provided in the coupling member.
In principle, the hollow body adjacent to the bumper element and the coupling member are fixedly connected to one another. Alternatively, it is possible to configure the hollow body next to the bumper element and the coupling member penetrating it such that they are movable relative to one another. In this way, the inventive impact damping member is adjusted with these production engineering aspects to the different assembly situations.
Hollow bodies having of round, oval, or polygonal cross-section have an especially high energy absorption capacity, and round hollow bodies are especially expedient in this context. When the coupling member is moveably arranged within the hollow body at the bumper element, a round cross-section is especially expedient for the hollow body as well as the coupling member.
The longitudinal axes of the hollow bodies and thus also the longitudinal axis of the hollow body adjacent to the bumper element extend transversely to the longitudinal direction of extension of the impact damping member. In a preferred embodiment, the longitudinal axes of the hollow bodies extent vertically. However, any other orientation of the longitudinal axes of the hollow bodies is basically conceivable.
For connecting the impact damping member to the frame of the vehicle, the outer tube is provided with a flange which can be secured to the frame. The flange can be connected by material bonding, for example, by welding, to the outer tube, but also by a frictional connection such as screwing. However, a positive-locking connection such as a penetration connection is also possible for connecting the outer tube to the flange. In order to be able t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Impact damping member for motor vehicles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Impact damping member for motor vehicles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Impact damping member for motor vehicles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2608663

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.