Impact damper

Brakes – Internal-resistance motion retarder – Motion damped from condition detected outside of retarder

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C188S269000, C188S317000, C188S313000, C188S297000, C267S064130, C267S116000, C267S064260, C267S064280

Reexamination Certificate

active

06655509

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to an impact damper as a connecting member between a bumper and a chassis of a motor vehicle for the purpose of damping the shock loading during a collision between this motor vehicle and an obstacle through hydraulic damping forces and gas-spring forces. This impact damper essentially includes an inner tube, which can be displaced telescopically inside an outer tube, thereby changing the volume of a pressurized gas space, which interact by means of a separating piston with a first liquid space, which communicates hydraulically via a restriction orifice with a second liquid space, which is bounded by a deformation element. The separating piston is arranged in a floating manner in the inner tube and thereby brings about a static equilibrium by pressure compensation in the liquid spaces and in the gas space. The outer tube furthermore has a drawn-in portion around the deformation element, which brings the outer tube to a reduced diameter, within which is arranged a compensation space that can be filled with gas formed by an end wall at the end of the outer tube.
2. Description of the Related Art
U.S. Pat. No. 6,109,400, for example, discloses impact dampers of this kind in which use is made of two tubes that can be displaced one inside the other and within which a tandem damping system comprising respective gas spaces and liquid spaces has been set up. The arrangement of a plurality of pistons makes it possible to connect a first gas-space/liquid-space damping system to a second gas-space/liquid-space damping system via a piston rod. The aim of this arrangement is to react to the severity of the collision by activating the first gas-space/liquid damping system first, while the second gas-space/liquid damping system remains at rest. The high gas pressure in the gas space ensures that the impact damper springs back after a relatively light collision at low motor-vehicle speeds. Even after the activation of the second gas-space/liquid damping system, which gives the impact damper a progressive characteristic, the impact damper returns to its initial position after a collision at a somewhat higher speed.
Apart from the outlay and the space requirement for an impact damper of this kind, it primarily serves its purpose of cushioning the mass of the motor vehicle when it hits an obstacle, the primary concern here being self-preservation, not the protection of the obstacle as well, which, apart from the wall of a house or a parking motor vehicle, can also be a two-wheeled vehicle or a pedestrian.
SUMMARY OF THE INVENTION
The object of the invention is to provide an impact damper with gas spaces and liquid spaces that react to the obstacles with which the motor vehicle collides with a softer or harder setting, i.e. a lower or higher pressure in the gas spaces, depending on the mass of the obstacle.
As a solution to this object, the proposal is to provide an impact damper, likewise comprising an outer tube and an inner tube, within which a first and a second gas space are arranged, which are separated by two liquid spaces that are connected to one another via a partition wall with a restriction orifice. The first gas space is arranged in the inner tube at the bumper end and is separated from the first liquid space by a dividing piston arranged in a floating manner in the inner tube. The first liquid space in turn is separated, by a partition wall with a restriction at the chassis end of the inner tube, from the second liquid space, which is arranged in the outer tube and adjoins a deformation element that comes to rest on a drawn-in portion in the outer tube. This portion bringing the latter to a reduced diameter toward its chassis end. The deformation element has an adjustable control valve, which can be opened and closed via an electrical control line. At the chassis end of the outer tube, the latter encloses a compensation space (second gas space), which is filled with gas and can be brought optionally to a high or a low pressure. For this purpose, the compensation space is connected by a pneumatic feed line to an accumulator, the latter containing a regulating valve, which can be controlled electrically.
The fittings of the impact damper are configured in such a way that they can be activated within fractions of a second and can vary the impact-damper setting in such a way that the shock to be expected against the bumper can be taken in an optimum way when the motor vehicle is involved in a collision.
Nowadays, a detection sensor system in the motor vehicle is capable of detecting the size and mass of an obstacle while allowing for the speed of the motor vehicle and of converting them into electrical commands. These are fed to the regulating valve—insofar as this is required—and/or to the adjustable control valve via the electrical control line and implemented, as described below.
In the case of collisions with low shock loading, the inner tube is pushed into the outer tube, only the first gas space being reduced in size, and the gas charge being compressed. In this process, the interaction of the first liquid space with the second liquid space performs damping functions by virtue of the fact that liquid is forced from the second liquid space into the first liquid space through the restriction orifice in the partition wall. As a result, the first liquid space increases in size by virtue of the fact that the dividing piston slides in the inner tube in the direction of the bumper and reduces the size of the first gas space and thus increases the pressure there. Once inward motion is finished, the gas spring formed by the first gas space ensures that the inner tube returns to its initial position.
It is possible likewise to connect the first gas space to a regulating valve and then to the accumulator via a pneumatic feed line, making it possible to vary the gas spring for collisions involving relatively low shock loading. However, such a measure increases the cost of the device and is therefore feasible only on more valuable motor vehicles. The preloading in the first gas space is therefore chosen to allow primarily for collisions with two-wheeled vehicles or pedestrians.
Shock loads involving a higher momentum can be taken without destruction of the impact damper up to a certain level by virtue of the fact that the adjustable control valve is opened, with the result that liquid is forced from the second liquid space into the compensation space, performing damping work in the process. In addition to the aperture cross section of the control valve, it is the pressure in the compensation space which determines the quantity of liquid that flows into the compensation space. However, the damping work can be performed by the impact damper in this manner only once, since the liquid can be returned from the compensation space only under specific workshop conditions, if at all. Moreover, the inner tube is no longer returned to the initial position because of the reduction in size of the liquid spaces.
The presence of the deformation element has been found to be advantageous in the case of collisions with the highest shock loads, the deformation element being pushed with a diameter corresponding to the diameter of the outer tube into the reduced-diameter end of the tube, expanding the latter and absorbing deformation work, as a result of which the frame of the motor vehicle may remain free from deformation and repair of the motor vehicle may be limited to replacement of the impact dampers and possibly of the bumper. During this process, the control valve is fully open, and the pneumatic pressure in the compensation space is raised to the maximum possible value in order to fully exploit the potential of the spring forces in the gas spaces as well.
Other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Impact damper does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Impact damper, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Impact damper will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3163496

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.