Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai
Reexamination Certificate
1997-10-30
2001-05-29
Martinell, James (Department: 1633)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Carbohydrate doai
C536S023100
Reexamination Certificate
active
06239116
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to oligonucleotides and more specifically to oligonucleotides which have a sequence including at least one unmethylated CpG dinucleotide which are immunostimulatory.
BACKGROUND OF THE INVENTION
In the 1970's, several investigators reported the binding of high molecular weight DNA to cell membranes (Lerner, R. A., et al. 1971. “Membrane-associated DNA in the cytoplasm of diploid human lymphocytes”.
Proc. Natl. Acad. Sci. USA
68:1212; Agrawal, S. K., R. W. Wagner, P. K. McAllister, and B. Rosenberg. 1975. “Cell-surface-associated nucleic acid in tumorigenic cells made visible with platinum-pyrimidine complexes by electron microscopy”.
Proc. Natl. Acad. Sci. USA
72:928). In 1985, Bennett et al. presented the first evidence that DNA binding to lymphocytes is similar to a ligand receptor interaction: binding is saturable, competitive, and leads to DNA endocytosis and degradation into oligonucleotides (Bennett, R. M., G. T. Gabor, and M. M. Merritt. 1985. “DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA”.
J. Clin. Invest.
76:2182). Like DNA, oligodeoxyribonucleotides (ODNs) are able to enter cells in a saturable, sequence independent, and temperature and energy dependent fashion (reviewed in Jaroszewski, J. W., and J. S. Cohen. 1991. “Cellular uptake of antisense oligodeoxynucleotides”.
Advanced Drug Delivery Reviews
6:235; Akhtar, S., Y. Shoji, and R. L. Juliano. 1992. “Pharmaceutical aspects of the biological stability and membrane transport characteristics of antisense oligonucleotides”. In:
Gene Regulation: Biology of Antisense RNA and DNA.
R. P. Erickson, and J. G. Izant, eds. Raven Press, Ltd. New York, pp. 133; and Zhao, Q., T. Waldschmidt, E. Fisher, C. J. Herrera, and A. M. Krieg., 1994. “Stage specific oligonucleotide uptake in murine bone marrow B cell precursors”.
Blood,
84:3660). No receptor for DNA or ODN uptake has yet been cloned, and it is not yet clear whether ODN binding and cell uptake occurs through the same or a different mechanism from that of high molecular weight DNA.
Lymphocyte ODN uptake has been shown to be regulated by cell activation. Spleen cells stimulated with the B cell mitogen LPS had dramatically enhanced ODN uptake in the B cell population, while spleen cells treated with the T cell mitogen Con A showed enhanced ODN uptake by T but not B cells (Krieg, A. M., F. Gmelig-Meyling, M. F. Gourley, W. J. Kisch, L. A. Chrisey, and A. D. Steinberg. 1991. “Uptake of oligodeoxyribonucleotides by lymphoid cells is heterogeneous and inducible”.
Antisense Research and Development
1:161).
Several polynucleotides have been extensively evaluated as biological response modifiers. Perhaps the best example is poly (I,C) which is a potent inducer of IFN production as well as a macrophage activator and inducer of NK activity (Talmadge, J. E., J. Adams, H. Phillips, M. Collins, B. Lenz, M. Schneider, E. Schlick, R. Ruffmann, R. H. Wiltrout, and M. A. Chirigos. 1985. “Immunomodulatory effects in mice of polyinosinic-polycytidylic acid complexed with poly-L-lysine and carboxymethylcellulose”.
Cancer Res.
45:1058; Wiltrout, R. H., R. R. Salup, T. A. Twilley, and J. E. Talmadge. 1985. “Immunomodulation of natural killer activity by polyribonucleotides”.
J. Biol. Resp. Mod.
4:512; Krown, S. E. 1986. “Interferons and interferon inducers in cancer treatment”.
Sem. Oncol.
13:207; and Ewel, C. H., S. J. Urba, W. C. Kopp, J. W. Smith II, R. G. Steis, J. L. Rossio, D. L. Longo, M. J. Jones, W. G. Alvord, C. M. Pinsky, J. M. Beveridge, K. L. McNitt, and S. P. Creekmore. 1992. “Polyinosinic-polycytidylic acid complexed with poly-L-lysine and carboxymethylcellulose in combination with interleukin-2 in patients with cancer: clinical and immunological effects”.
Canc. Res.
52:3005). It appears that this murine NK activation may be due solely to induction of IFN-&bgr; secretion (Ishikawa, R., and C. A. Biron. 1993. “IFN induction and associated changes in splenic leukocyte distribution”.
J. Immunol.
150:3713). This activation was specific for the ribose sugar since deoxyribose was ineffective. Its potent in vitro antitumor activity led to several clinical trials using poly (I,C) complexed with poly-L-lysine and carboxymethylcellulose (to reduce degradation by RNAse) (Talmadge, J. E., et al., 1985. cited supra; Wiltrout, R. H., et al., 1985. cited supra); Krown, S. E., 1986. cited supra); and Ewel, C. H., et al., 1992. cited supra). Unfortunately, toxic side effects have thus far prevented poly (I,C) from becoming a useful therapeutic agent.
Guanine ribonucleotides substituted at the C8 position with either a bromine or a thiol group are B cell mitogens and may replace “B cell differentiation factors” (Feldbush, T. L., and Z. K. Ballas. 1985. “Lymphokine-like activity of 8-mercaptoguanosine: induction of T and B cell differentiation”.
J. Immunol.
134:3204; and Goodman, M. G. 1986. “Mechanism of synergy between T cell signals and C8-substituted guanine nucleosides in humoral immunity: B lymphotropic cytokines induce responsiveness to 8-mercaptoguanosine”.
J. Immunol.
136:3335). 8-mercaptoguanosine and 8-bromoguanosine also can substitute for the cytokine requirement for the generation of MHC restricted CTL (Feldbush, T. L., 1985. cited supra), augment murine NK activity (Koo, G. C., M. E. Jewell, C. L. Manyak, N. H. Sigal, and L. S. Wicker. 1988. “Activation of murine natural killer cells and macrophages by 8-bromoguanosine”.
J. Immunol.
140:3249), and synergize with IL-2 in inducing murine LAK generation (Thompson, R. A., and Z. K. Ballas. 1990. “Lymphokine-activated killer (LAK) cells. V. 8-Mercaptoguanosine as an IL-2-sparing agent in LAK generation”.
J. Immunol.
145:3524). The NK and LAK augmenting activities of these C8-substituted guanosines appear to be due to their induction of IFN (Thompson, R. A., et al. 1990. cited supra). Recently, a 5′ triphosphorylated thymidine produced by a mycobacterium was found to be mitogenic for a subset of human &ggr;&dgr; T cells (Constant, P., F. Davodeau, M.-A. Peyrat, Y. Poquet, G. Puzo, M. Bonneville, and J.-J. Fournie. 1994. “Stimulation of human &ggr;&dgr; T cells by nonpeptidic mycobacterial ligands”
Science
264:267). This report indicated the possibility that the immune system may have evolved ways to preferentially respond to microbial nucleic acids.
Several observations suggest that certain DNA structures may also have the potential to activate lymphocytes. For example, Bell et al. reported that nucleosomal protein-DNA complexes (but not naked DNA) in spleen cell supernatants caused B cell proliferation and immunoglobulin secretion (Bell, D.A., B. Morrison, and P. VandenBygaart. 1990. “Immunogenic DNA-related factors”.
J. Clin. Invest.
85:1487). In other cases, naked DNA has been reported to have immune effects. For example, Messina et al. have recently reported that 260 to 800 bp fragments of poly (dG).(dC) and poly (dG.dC) were mitogenic for B cells (Messina, J. P., G. S. Gilkeson, and D. S. Pisetsky. 1993. “The influence of DNA structure on the in vitro stimulation of murine lymphocytes by natural and synthetic polynucleotide antigens”.
Cell. Immunol
147:148). Tokunaga, et al. have reported that dG.dC induces &ggr;-IFN and NK activity (Tokunaga, S. Yamamoto, and K. Namba. 1988. “A synthetic single-stranded DNA, poly(dG, dC), induces interferon-&agr;/b and -g, augments natural killer activity, and suppresses tumor growth” Jpn.
J. Cancer Res.
79:682). Aside from such artificial homopolymer sequences, Pisetsky et al. reported that pure mammalian DNA has no detectable immune effects, but that DNA from certain bacteria induces B cell activation and immunoglobulin secretion (Messina, J. P., G. S. Gilkeson, and D. S. Pisetsky. 1991. “Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA”.
J. Immunol.
147:1759). Assuming that these data did not result from some unusual contaminant, these studies suggested that a particular structure or other
Kline Joel N.
Krieg Arthur M.
Martinell James
University of Iowa Research Foundation
Wolf Greenfield & Sacks P.C.
LandOfFree
Immunostimulatory nucleic acid molecules does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Immunostimulatory nucleic acid molecules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Immunostimulatory nucleic acid molecules will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2513871