Drug – bio-affecting and body treating compositions – Nonspecific immunoeffector – per se ; or nonspecific...
Reexamination Certificate
2001-06-27
2003-08-26
Housel, James (Department: 1648)
Drug, bio-affecting and body treating compositions
Nonspecific immunoeffector, per se ; or nonspecific...
C424S184100, C424S283100, C536S023100
Reexamination Certificate
active
06610308
ABSTRACT:
This application is a 371 of PCT/FR00/02177 filed Sep. 13, 1999, and claims priority to foreign application FR 98/11520 filed Sep. 11, 1998.
The invention relates to the domain of vaccines and more particularly to vaccine adjuvants.
Vaccines, whether they are prophylactic or therapeutic, are intended to stimulate the immune system of the human or animal organism to which they are administered, the response of the immune system possibly being either a response of the humoral type (production of antibodies), a response of cellular type, or a combination of the 2 types of response. Conventionally, for many years, vaccination has consisted in administering to an organism a nonpathogenic version of a microorganism so as to prepare the immune system to react effectively should the organism subsequently encounter the same microorganism, in its pathogenic version. The antigen administered during the vaccination can be of various types: whole or fragmented killed microorganism, attenuated live strain of the microorganism, antigenic fractions of the microorganism or polynucleotides capable of leading to the expression by the organism of an antigenic fraction.
For a long time already, attempts have been made to increase the response of the immune system or to modify its nature, not only by acting on the antigen administered or on its method of administration, but also by adding to it immunostimulating substances or adjuvants. Since Freund's complete adjuvant, many products have been tested, in particular inorganic salts (such as zinc chloride calcium phosphate, aluminum hydroxide or aluminum phosphate, for example), saponins, polymers, lipids or lipid fractions (Lipid A, Monophosphoryl Lipid A), etc. However, few of them have all the desired characteristics: to be good immunoadjuvants which are stable but have no risk of toxicity.
Oligonucleotides which may have immunostimulating activity are, on the other hand, known, through application WO 96/02555, these oligonucleotides possibly being administered as a vaccine adjuvant. This reference also mentions the possibility of combining with these oligonucleotides, by ionic or covalent attachment or by encapsulation, means for targeting the administration of the oligonucleotide. Such means can, in particular, consist of sterol, lipid (for example a cationic lipid, a virosome or a liposome) or an agent for specific binding to the target cell (for example a binder recognized by a receptor specific for the target cell). That application also mentions, among all the variants of use of the polynucleotides described, the possibility of administering them in conjunction with a pharmaceutically acceptable carrier vehicle. That application does not identify a vehicle as being of particular advantage, but gives an indicative list thereof and cites, in this respect, in particular solutions, solvents, dispersion media, delaying agents, emulsions and others, the use of such media for pharmaceutically active substances being mentioned as being well known in this domain.
According to the teaching of that document, the amount of oligonucleotides administered should be of sufficient amount to produce the desired biological effect.
Now, the authors of the present invention have found that, quite unexpectedly, it is possible to greatly increase the immunoadjuvant effect of an oligonucleotide without being obliged to increase the amount of oligonucleotides or the amount of antigens administered.
In order to attain this goal, a subject of the invention is an immunostimulant emulsion of the oil-in-water type, comprising at least one aqueous phase and one oily phase, characterized in that it also comprises at least one immunostimulant polynucleotide, at least one portion of which is covalently coupled to at least one lipid molecule.
For the purposes of the invention, the expression “emulsion of the oil-in-water type” is intended to mean a dispersion of droplets of oil in an aqueous phase which can consist of buffer such as the PBS buffer. The oily phase consists of a pharmaceutically acceptable oil which can be a mineral, animal or plant oil. Preferably, an oil which can be metabolized is used, such as squalene, esters (in particular ethyl oleate, isopropyl myristate), a plant oil (for example castor oil, sunflower oil, olive oil, etc.) or a modified plant oil (ex.: macrogol glycerides). It is possible, in particular, to obtain a satisfactory emulsion by mixing 500 mg of squalene with 10 ml of PBS buffer in a machine such as an ULTRA-TURRAX™, and then microfluidizing the dispersion obtained using a microfluidizer such as the Microfluidics™, which makes it possible to obtain oily particles which have a diameter of less than 200 nm.
In order to facilitate the formation of the emulsion, it is possible to also use a surfactant, in particular a surfactant which has an HLB (Hydrophilic/Lipophilic Balance) value of between 6 and 14. It is in particular possible to use a surfactant chosen from the following list of products: sorbitan esters and polysorbates, ethoxylated castor oil, which may or may not be hydrogenated, ethoxylated stearic acid, 10 EO oleyl alcohol, 20 EO cetostearyl alcohol, glycerol stearate, propylene glycol stearate, lecithins, sodium lauryl sulfate, sodium stearate, 7 EO ethoxylated glycerol cocoate, ethoxylated esters of glycerol, ethoxylated oleic acids, and mannitan oleate. Particularly good results have been obtained using TWEEN™ 80.
The emulsion obtained is considered to be immunostimulant if it is capable of causing or of increasing the stimulation of the immune system, for example when it is administered together with a vaccine antigen. In this application, the emulsion is used as an immunoadjuvant.
This immunoadjuvant activity may be expressed in various ways:
make the response of the immune system to the joint administration of the antigen and of the emulsion visible, whereas the response to administration of the antigen alone was not,
increase the degree of the response of the immune system without modifying the nature thereof (for example: increase the amount of antibodies produced),
modify the nature of the response of the immune system to the administration of the antigen (for example, induce a cellular response, whereas the administration of the a alone caused only a humoral response),
induce or increase the production of cytokines, or of certain cytokines in particular.
For the purpose of the present invention, the term “polynucleotides” is understood to mean a single-stranded oligonucleotide having from 6 to 100 nucleotides, preferably from 6 to 30 nucleotides. It can be an oligoribonucleotide or an oligodeoxy-ribonucleotide. Preference is given to the use of polynucleotides comprising basic sequences with inverted symmetry, such as is the case in palindromic sequences (i.e sequences of the type ABCDEEE′D′ C′ B′ A′ in which A and A′, B and B′, C and C′, D and D′, and E and E′ are bases which are complementary in the sense of Watson and Crick), and more particularly polynucleotides comprising at least one cytosine, guanine dinucleotide sequence in which the cytosine and guanine are not methylated. Any other polynucleotide known to be, by its very nature, immunostimulant may be suitable for the purposes of the invention. Thus, it is also possible to use the immunostimulant oligonucleotides described in Patent Application WO96/02555. Particularly good results have been obtained using a polynucleotide for which the sequence of the bases is as follows: GAGAACGCTCGACCTTCGAT.
The oligonucleotides suitable for the purposes of the invention can be in the form of phosphodiesters or, in order to be more stable, in the form of phosphorothioates or of phosphodiester/phosphorothioate hybrids. Although it is possible to use oligonucleotides originating from existing nucleic acid sources, such as genomic DNA or cDNA, preference is given to the use of synthetic oligonucleotides. Thus, it is possible to develop oligonucleotides on a solid support using the &bgr;-cyanoethyl phosphoramidite m
Aventis Pasteur S.A.
Brown Stacy S.
Housel James
McDonnell & Boehnen Hulbert & Berghoff
LandOfFree
Immunostimulant emulsion does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Immunostimulant emulsion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Immunostimulant emulsion will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3107929