Immunogenic formulations comprising oil bodies

Drug – bio-affecting and body treating compositions – Plant material or plant extract of undetermined constitution... – Containing or obtained from a seed or nut

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S278100, C424S283100, C424S400000, C424S725000, C424S731000, C424S757000, C424S758000, C424S768000, C424S776000, C424S812000, C514S885000

Reexamination Certificate

active

06761914

ABSTRACT:

FIELD OF THE INVENTION
The present invention provides novel adjuvants which comprise oil bodies and novel vaccines which comprise oil bodies and an antigen. The invention also provides a method for preparing the vaccines and the use of the vaccines.
BACKGROUND OF THE INVENTION
Emulsions are mixtures prepared from two mutually insoluble components. It is possible to generate mixtures of homogenous macroscopic appearance from these components through proper selection and manipulation of mixing conditions. The most common type of emulsions are those in which an aqueous component and a lipophilic component are employed and which in the art are frequently referred to as oil-in-water and water-in-oil emulsions. In oil-in-water emulsions the lipophilic phase is dispersed in the aqueous phase, while in water-in-oil emulsions the aqueous phase is dispersed in the lipophilic phase. Commonly known emulsion based formulations that are applied to the skin include cosmetic products such as creams, lotions, washes, cleansers, milks and the like as well as dermatological products comprising ingredients to treat skin conditions, diseases or abnormalities.
Generally emulsions are prepared in the presence of a multiplicity of other substances in order to achieve a desirable balance of emulsification, viscosity, stability and appearance. For example, the formulation of emulsions usually requires at least one, and frequently a combination of several, emulsifying agents. These agents facilitate the dispersal of one immiscible phase into the other and assist in stabilizing the emulsion. A comprehensive overview of emulsifying agents and their applications may be found in Becher, P. Encyclopedia of Emulsion Technology, Dekker Ed., 1983. Active agents beneficial to the skin, such as compounds to treat skin diseases, are also frequently formulated as emulsions in order to enhance their stability and to facilitate application of the active agent to the skin.
In the seeds of oilseed crops, which include economically important crops, such as soybean, rapeseed, sunflower and palm, the water insoluble oil fraction is stored in discrete subcellular structures variously known in the art as oil bodies, oleosomes, lipid bodies or spherosomes (Huang 1992, Ann. Rev. Plant Mol. Biol. 43: 177-200). Besides a mixture of oils (triacylglycerides), which chemically are defined as glycerol esters of fatty acids, oil bodies comprise phospholipids and a number of associated proteins, collectively termed oil body proteins. From a structural point of view, oil bodies are considered to be a triacylglyceride matrix encapsulated by a monolayer of phospholipids in which oil body proteins are embedded (Huang, 1992, Ann. Rev. Plant Mol. Biol. 43: 177-200). The seed oil present in the oil body fraction of plant species is a mixture of various triacylglycerides, of which the exact composition depends on the plant species from which the oil is derived. It has become possible through a combination of classical breeding and genetic engineering techniques, to manipulate the oil profile of seeds and expand on the naturally available repertoire of plant oil compositions. For an overview of the ongoing efforts in his area, see Designer Oil Crops/Breeding, Processing and Biotechnology, D. J. Murphy Ed., 1994, VCH Verlagsgesellschaft, Weinheim, Germany.
Plant seed oils are used in a variety of industrial applications, including the personal care industry. In order to obtain the plant oils used in these applications, seeds are crushed or pressed and subsequently refined using processes such as organic extraction, degumming, neutralization, bleaching and filtering. Aqueous extraction of plant oil seeds has also been documented (for example, Embong and Jelen, 1977, Can. Inst. Food Sci. Technol. J. 10: 239-243). Since the objective of the processes taught by the prior art is to obtain pure oil, oil bodies in the course of these production processes lose their structural integrity. Thus, the prior art emulsions formulated from plant oils generally do not comprise intact oil bodies.
Although fossil oil based products dominate certain markets, in other applications, oils derived from plant sources and fossil sources are in direct competition. Lauric oils, for example, which are widely used in the manufacture of detergents, are obtained from fossil oils as well as from coconut oil and more recently from genetically engineered rapeseed (Knauf, V. C., 1994, Fat. Sci. Techn. 96: 408). However, there is currently an increasing demand for biodegradable sources of raw materials. The plant oil body based emulsions of the present invention offer an advantage over similar mineral oil based formulations, in that the oil fraction is derived from a renewable and environmentally friendly source.
U.S. Pat. No. 5,683,740 to Voultoury et al. and U.S. Pat. No. 5,613,583 to Voultoury et al. disclose emulsions comprising lipid vesicles that have been prepared from crushed oleagenous plant seeds. In the course of the crushing process, oil bodies substantially lose their structural integrity. Accordingly, these patents disclose that in the crushing process, 70% to 90% of the seed oil is released in the form of free oil. Thus the emulsions which are the subject matter of these patents are prepared from crushed seeds from which a substantial amount of free oil has been released while the structural integrity of the oil bodies is substantially lost. In addition, the emulsions disclosed in both of these patents are prepared from relatively crude seed extracts and comprise numerous endogenous seed components including glycosylated and non-glycosylated non-oil body seed proteins. It is a disadvantage of the emulsions to which these patents relate that they comprise contaminating seed components imparting a variety of undesirable properties, which may include allergenicity and undesirable odour, flavour, colour and organoleptic characteristics, to the emulsions. Due to the presence of seed contaminants, the emulsions disclosed in these patents have limited applications.
There have been extensive efforts directed towards development of subunit vaccines for human and veterinary disease control over the past two decades. Subunit vaccines are based on individual components derived from an infective agent that trigger the immune response. Identification of an appropriate antigen is only a first step in the development of a subunit vaccine as an effective adjuvant and delivery system as well as an economical means of production and purification of the desired antigen is required.
An adjuvant is any material that can increase the specific humoral and/or cellular response(s) to antigens. This rather broad definition has resulted in a highly heterogeneous collection of compounds being recognized as adjuvants. Thus it has been difficult to define a precise mode of action that is common to all adjuvants. It is widely believed that many adjuvants (i.e. emulsions, alum) act by forming antigenic deposits at the site of inoculation which slowly release antigens to cells of the immune system. The slow release of antigen results in a prolonged stimulation of the immune system for protracted periods. The particulate nature of the deposit may also enhance the uptake of antigen by the antigen processing cells, an important step for fully stimulating the immune system. In addition, some adjuvants contain components that stimulate the cells of the immune system and thus enhance the response to the antigen included in the formulation. More recently, molecular adjuvants are being developed that can stimulate specific cells or target antigens to specific cells and thus potentially have a more directed and predictable effect. Regardless of the exact mechanism, both cell-mediated and humoral immunity may be stimulated to varying degrees depending upon the antigen, the adjuvant, the protocol and the species involved.
The classic example of a highly effective adjuvant for eliciting a persistent immunological response after injection was described by J. Freund, (J. Immunol. 60:383-98, 1948). Freunds comp

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Immunogenic formulations comprising oil bodies does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Immunogenic formulations comprising oil bodies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Immunogenic formulations comprising oil bodies will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3200562

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.