Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2003-03-31
2003-12-16
Ganey, Steven J. (Department: 3752)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S048000, C604S093010, C604S164080, C606S022000, C606S127000, C606S128000
Reexamination Certificate
active
06663594
ABSTRACT:
TECHNICAL FIELD
This invention generally relates to medical instruments and methods for retrieving material from within a body. More particularly, the invention relates to retrieval methods, devices, and compositions for stabilizing and removing stones such as urinary tract stones, gall stones, and other objects found in the body.
BACKGROUND INFORMATION
Medical retrieval devices generally are used to retrieve biological and foreign material, such as kidney stones and other calculi, from the body of a patient. Such medical retrieval devices may be used with an endoscope or a laparoscope. The use of such devices to capture foreign material like stones is made difficult by the freedom of movement of the stones within the body. A stone may dislodge from its resting place when contacted by a retrieval device. This may cause the stone to move into an area of the body that renders the stone inaccessible or undetectable, thus preventing the capture and removal of the stone.
Larger stones often need to be shattered because their size prohibits non-surgical removal from the body. Shattering a stone (by, for example, light, chemical, or physical energy) can disperse the resulting stone fragments from the original location of the stone. Stone fragments that are not removed from the body can form the nuclei for the formation of new stones. The dispersal of the fragments caused by the shattering process can cause fragments to move into inaccessible or unknown areas of the body, thus preventing or interfering with the capture and removal of the fragments.
SUMMARY OF THE INVENTION
It is an object of the invention to facilitate the capture and removal of objects located within the body. The invention generally includes the use of a material or materials that exist in liquid form and is transformed into a gel inside the body of a patient. In one aspect, the invention generally includes the use of a material that exists in liquid form at temperatures below about body temperature and as a gel at temperatures about at and above body temperature. The temperature at which the transition from liquid to gel occurs is referred to as the lower critical solution temperature (LCST), and it can be a small temperature range as opposed to a specific temperature. Materials appropriate for use according to the invention possess a LCST and are referred to as LCST materials.
The methods and systems of the present invention generally involve the injection of an LCST material into a cavity or space within the body. Once inside the body, the LCST material can contact and at least partially contain an object. In many cases, the LCST will entirely envelop and surround the object. As the temperature of the LCST material rises due to the internal temperature of the body, the LCST material will reach its LCST and thus transition into the gel phase. The specific transition point or range is determined by the specific LCST material utilized. An object in contact with the LCST material can be at least partially trapped and stabilized by the gel. The stabilization of the object allows for easier capture and retrieval of the object. Stabilization of the object also allows for easier use of a lithotripsy device for fragmenting the object because the gel holds the object in place. Furthermore, the gel prevents the free dispersal of fragments of the object after the object is broken apart by the lithotripsy device. Preventing the dispersal of the fragments allows for easier capture and retrieval of the object fragments.
The invention also relates to materials other than LCST materials that are in a flowable form outside of the patient's body and may be transformed into a gel form inside the patient's body. A material including crosslinkable polymers may be in a flowable form and upon contact with a crosslinking agent be transformed into gel form. The gel formed from a material including crosslinkable polymers functions similarly to the LCST material by contacting and stabilizing an object in the patient's body. The gel formed from the crosslinkable polymers may be dissolved by contact with a de-crosslinking agent. A de-crosslinking agent weakens or removes the bonds within the network of crosslinkable polymers that forms the gel. Once the gel is dissolved the material returns to a flowable form and may be more easily removed from the patient's body.
Other materials related to the invention include gelatin materials. Gelatin materials exist in liquid form at temperatures above about body temperature and as a gel at temperatures below about body temperature. The gelatin material is cooled after it is injected into the patient's body in order to transform the gelatin material into a gel form. Cooling of the gelatin material can be performed by contacting the gelatin material with a liquid that is at a temperature below about body temperature. Water or a buffer at a temperature below about body temperature may be injected concurrently with the injection of the gelatin material, for example.
The invention, in one aspect, includes a method of stabilizing an object in the body of a patient. The method includes injecting a lower critical solution temperature material in a flowable form into the body of the patient to contact the object. The method further includes allowing the lower critical solution temperature material to form a gel in the body due to a temperature inside the body. The object thus is contained at least partially within the gel and stabilized by the gel.
In one embodiment according to this aspect of the invention, the method involves the use of the lower critical solution temperature (LCST) material that remains in the flowable form below about the temperature inside the body of the patient. The LCST material can form the gel about at and above the temperature inside the body of the patient.
In other embodiments, the method can include retrieving the stabilized object from the gel and/or breaking the object into at least two fragments. At least some of the fragments remain at least partially within the gel and stabilized by the gel, and these fragments can then be retrieved from the gel.
In another aspect, the invention relates to a system for stabilizing an object in the body of a patient. The system includes a lower critical solution temperature material which remains in a flowable form below about a temperature inside the body of the patient and which forms a gel about at and above the temperature inside the body of the patient. The system also includes a catheter for transferring the lower critical solution temperature material into the body in the flowable form and a guide wire for introducing the catheter into the body and guiding it to about the location of the object. The system also includes a mechanism to force the lower critical solution temperature material in the flowable form through the catheter and into the body to contact the object. The lower critical solution temperature material gels inside the body due to the temperature inside the body and thereby contains at least a portion of the object within the gel to stabilize the object. One embodiment according to this aspect of the invention involves the use of the catheter to remove the lower critical solution temperature material from the body.
In still another aspect, the invention features a system for stabilizing an object in the body of a patient. The system includes a lower critical solution temperature material which remains in a flowable form below about a temperature inside the body of the patient and which forms a gel about at and above the temperature inside the body of the patient. The system also includes a percutaneous access device for transferring the lower critical solution temperature material into the body in the flowable form. The system further includes a mechanism to force the lower critical solution temperature material in the flowable form through the percutaneous access device and, into the body to contact the object. As before the lower critical solution temperature material gels once inside the body d
Little Bill
Madenjian Arthur
Sahatjian Ronald
Ganey Steven J.
Sci-Med Life Systems, Inc.
Testa Hurwitz & Thibeault LLP
LandOfFree
Immobilizing objects in the body does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Immobilizing objects in the body, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Immobilizing objects in the body will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3151392