Iminochlorinaspartic acid derivatives

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

540145, 540474, C07D48722, A61K 3841

Patent

active

060637773

DESCRIPTION:

BRIEF SUMMARY
TECHNICAL FIELD

The present invention relates to an iminochlorin aspartic acid derivative or a pharmaceutically acceptable salt thereof. The present invention also relates to a photosensitizer comprising the iminochlorin aspartic acid derivative or a pharmaceutically acceptable salt thereof, which is useful for diagnosis or treatment of human beings or animals.


BACKGROUND ART

As a new method for treatment of cancer, photophysicochemical diagnosis and therapy (PDT: Photodynamic Therapy) has been used. It is a method in which a certain type of porphyrin derivative is administered to a subject by, for example, intravenous injection to retain the porphyrin derivative in the target cancerous tissues in the subject, followed by laser irradiation to cause selective destruction of the cancerous tissues. The therapy utilizes the two properties of a porphyrin derivative, i.e., selectivity for cancerous tissues and photosensitivity.
The only porphyrin derivative currently used in PDT is porphymer sodium. Porphymer sodium is a mixture of products which can be prepared by treating hematoporphyrin with sulfuric acid in acetic acid and then hydrolyzing with 0.1 N sodium hydroxide, and is a 2- to 6-polymer comprising an ether and/or ester of a hematoporphyrin derivative.
However, porphymer sodium is known to cause temporary photosensitivity as an undesirable side effect when administered to man, and further, selective distribution to cancerous tissues is not sufficient for practical use, and therefore the problem of accumulation in normal tissues is present.
Under the circumstances, a patient treated with porphymer sodium is required to stay in the dark for a long period of time until it is completely excreted from the body so that normal cells are not damaged by the photosensitizing action of porphymer sodium accumulated in normal tissues. However, since porphymer sodium shows a slow excretion rate from normal tissues, it sometimes causes photosensitivity to last for more than six weeks.
In addition, PDT using porphymer sodium has a problem with transmission of the light irradiated by laser through tissues. Porphymer sodium has a longest wavelength absorption end at 630 nm and a molar absorption coefficient being as small as 3,000. Since there are many components present in a living body which prevent the transmission of light, such as oxyhemoglobin and water, the light of wavelength of 630 nm exhibits a poor transmission through tissues, which cannot sufficiently reach to deep sites, and therefore, PDT using porphymer sodium is only indicated for cancers developing in the surface layers of 5 to 10 mm depth. The wavelength which is least affected by the light absorption by the components in a living body is in a range of 650 to 750 nm, therefore , photosensitizers for PDT having the longest wavelength absorption end within such range are most desirable.
Laser devices themselves have also a problem. For example, dye lasers which are most commonly used at present have a poor stability in performance and therefore are difficult in handling in practical use. On the other hand, titanium-sapphire lasers enable to facilitate the practice of PDT considerably. However, this type of lasers are limited in the excitable wavelength to not less than 670 nm and not more than 600 nm, and therefore are not applicable to porphymer sodium which has an absorption wavelength of near 630 nm.
Recently, semiconductor lasers (670 nm), which are applicable to compounds exhibiting an absorption near 670 nm, have been developed, and quite recently OPO-YAG laser has been developed, which made it possible to cover almost all of wavelengths.
As mentioned above, photosensitizers currently used for PDT have various defects and therefore development of new agents without such defects is strongly desired. In an attempt to overcome those problems, an agent which is a single compound and exhibits its absorption in a longer wavelength region (650-800 nm) has been proposed as a second generation agent for PDT.
Examples of such second generation agent incl

REFERENCES:
patent: 5770730 (1998-06-01), Pandey et al.
Hardegger., Einfuhrung in das Org-Chem Praktikum., 1958., p. 61.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Iminochlorinaspartic acid derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Iminochlorinaspartic acid derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Iminochlorinaspartic acid derivatives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-259046

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.