Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2001-03-12
2003-12-23
Stockton, Laura L. (Department: 1626)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S391000, C548S311700, C548S319500
Reexamination Certificate
active
06667334
ABSTRACT:
The present invention relates to imidazolidine derivatives of the formula I,
in which B, E, W, Y, R, R
2
, R
3
, R
30
, e and h have the meanings indicated below. The compounds of the formula I are valuable pharmaceutical active compounds, which are suitable, for example, for the therapy and prophylaxis of inflammatory disorders, for example of rheumatoid arthritis, or of allergic disorders. The compounds of the formula I are inhibitors of the adhesion and migration of leukocytes and/or antagonists of the adhesion receptor VLA-4 belonging to the integrins group. They are generally suitable for the therapy or prophylaxis of diseases which are caused by an undesired extent of leukocyte adhesion and/or leukocyte migration or are associated therewith, or in which cell-cell or cell-matrix interactions which are based on interactions of VLA-4 receptors with their ligands play a part. The invention furthermore relates to processes for the preparation of the compounds of the formula I, their use, in particular as pharmaceutical active compounds, and pharmaceutical preparations which contain compounds of the formula I.
The integrins are a group of adhesion receptors which play an important part in cell-cell-binding and cell-extracellular matrix-binding processes. They have an &agr;&bgr;-heterodimeric structure and exhibit a wide cellular distribution and a high extent of evolutive conservation. The integrins include, for example, the fibrinogen receptor on platelets, which interacts especially with the RGD sequence of fibrinogen, or the vitronectin receptor on osteoclasts, which interacts especially with the RGD sequence of vitronectin or of osteopontin. The integrins are divided into three major groups, the &bgr;2 subfamily with the representatives LFA-1, Mac-1 and p150/95, which are responsible in particular for cell-cell interactions of the immune system, and the subfamilies &bgr;1 and &bgr;3, whose representatives mainly mediate cell adhesion to components of the extracellular matrix (Ruoslahti, Annu. Rev. Biochem. 1988, 57, 375). The integrins of the &bgr;1 subfamily, also called VLA proteins (very late (activation) antigen), include at least six receptors which interact specifically with fibronectin, collagen and/or laminin as ligands. Within the VLA family, the integrin VLA-4 (&agr;4&bgr;1) is atypical, insofar as it is mainly restricted to lymphoid and myeloid cells and is responsible in these for cell-cell interactions with a large number of other cells. For example, VLA-4 mediates the interaction of T and B lymphocytes with the heparin II-binding fragment of human plasma fibronectin (FN). The binding of VLA-4 with the heparin II-binding fragment of plasma fibronectin is especially based on an interaction with an LDVP sequence. In contrast to the fibrinogen or vitronectin receptor, VLA-4 is not a typical RGD-binding integrin (Kilger and Holzmann, J. Mol. Meth. 1995, 73, 347).
The leukocytes circulating in the blood normally exhibit only a low affinity for the vascular endothelial cells which line the blood vessels. Cytokines which are released from inflamed tissue cause the activation of endothelial cells and thus the expression of a large number of cell surface antigens. These include, for example, the adhesion molecules ELAM-1 (endothelial cell adhesion molecule-1; also designated as E-selectin), which, inter alia, binds neutrophils, ICAM-1 (intercellular adhesion molecule-1), which interacts with LFA-1 (leukocyte function-associated antigen 1) on leukocytes, and VCAM-1 (vascular cell adhesion molecule-1), which binds various leukocytes, inter alia lymphocytes (Osborn et al., Cell 1989, 59, 1203). VCAM-1, like ICAM-1, is a member of the immunoglobulin gene superfamily. VCAM-1 (first known as INCAM-110) was identified as an adhesion molecule which is induced on endothelial cells by inflammatory cytokines such as TNF and IL-1 and lipopolysaccharides (LPS). Elices et al. (Cell 1990, 60, 577) showed that VLA-4 and VCAM-1 form a receptor-ligand pair which mediates the adhesion of lymphocytes to activated endothelium. The binding of VCAM-1 to VLA-4 does not take place here due to an interaction of the VLA-4 with an RGD sequence; this sequence is not contained in VCAM-1 (Bergelson et al., Current Biology 1995, 5, 615). VLA-4, however, also occurs on other leukocytes, and the adhesion of leukocytes other than lymphocytes is also mediated via the VCAM-1/VLA-4 adhesion mechanism. VLA-4 thus represents an individual example of &bgr;1 integrin receptor which, via the ligands VCAM-1 and fibronectin, plays an important part both in cell-cell interactions and in cell-extracellular matrix interactions.
The cytokine-induced adhesion molecules play an important part in the recruitment of leukocytes into extravascular tissue regions. Leukocytes are recruited into inflammatory tissue regions by cell adhesion molecules which are expressed on the surface of endothelial cells and serve as ligands for leukocyte cell surface proteins or protein complexes (receptors) (the terms ligand and receptor can also be used vice versa). Leukocytes from the blood must first adhere to endothelial cells before they can migrate into the synovium. Since VCAM-1 binds to cells which carry the integrin VLA-4 (&agr;4&bgr;1), such as eosinophils, T and B lymphocytes, monocytes or also neutrophils, it and the VCAM-1/VLA-4 mechanism have the function of recruiting cells of this type from the blood stream into areas of infection and inflammatory foci (Elices et al., Cell 1990, 60, 577; Osborn, Cell 1990, 62, 3; Issekutz et al., J. Exp. Med. 1996, 183, 2175).
The VCAM-1/VLA-4 adhesion mechanism has been connected with a number of physiological and pathological processes. Apart from cytokine-induced endothelium, VCAM-1 is additionally expressed, inter alia, by the following cells: myoblasts, lymphoid dendritic cells and tissue macrophages, rheumatoid synovium, cytokine-stimulated neural cells, parietal epithelial cells of the Bowman's capsule, the renal tubular epithelium, inflamed tissue during heart and kidney transplant rejection and by intestinal tissue in graft-versus-host disease. VCAM-1 is also found to be expressed on those tissue areas of the arterial endothelium which correspond to early arteriosclerotic plaques of a rabbit model. Additionally, VCAM-1 is expressed on follicular dendritic cells of human lymph nodes and is found on stroma cells of the bone marrow, for example in the mouse. The latter finding points to a function of VCAM-1 in B-cell development. Apart from cells of hematopoietic origin, VLA-4 is also found, for example, on melanoma cell lines, and the VCAM-1/VLA-4 adhesion mechanism is connected with the metastasis of such tumors (Rice et al., Science 1989, 246, 1303).
The main form in which VCAM-1 occurs in vivo on endothelial cells and which is the dominant form in vivo is designated as VCAM-7D and carries seven immunoglobulin domains. The domains 4, 5 and 6 are similar in their amino acid sequences to the domains 1, 2 and 3. The fourth domain is removed in a further form, consisting of six domains, designated here as VCAM-6D, by alternative splicing. VCAM-6D can also bind VLA-4-expressing cells.
Further details on VLA-4, VCAM-1, integrins and adhesion proteins are found, for example, in the articles by Kilger and Holzmann, J. Mol. Meth. 1995, 73, 347; Elices, Cell Adhesion in Human Disease, Wiley, Chichester 1995, p. 79; Kuijpers, Springer Semin. Immunopathol. 1995, 16, 379.
On account of the role of the VCAM-1/VLA-4 mechanism in cell adhesion processes, which are of importance, for example, in infections, inflammations or atherosclerosis, it has been attempted by means of interventions into these adhesion processes to control diseases, in particular, for example, inflammations (Osborn et al., Cell 1989, 59, 1203). A method of doing this is the use of monoclonal antibodies which are directed against VLA-4. Monoclonal antibodies (mAB) of this type, which as VLA-4 antagonists block the interaction between VCAM-1 and VLA-4, are known. Thus, for example, the anti-VLA-4 mAB HP2/1 and HP1/3 inhibi
Neises Bernhard
Stilz Hans Ulrich
Wehner Volkmar
Aventis Pharma Deutschland GmbH
Heller Ehrman White and McAuliffe
Stockton Laura L.
LandOfFree
Imidazolidine derivatives, the production thereof, their use... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Imidazolidine derivatives, the production thereof, their use..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Imidazolidine derivatives, the production thereof, their use... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3099542