Imbred maize line PH36E

Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C800S298000, C800S275000, C800S271000, C800S268000, C800S266000, C800S301000, C800S302000, C800S303000

Reexamination Certificate

active

06310274

ABSTRACT:

FIELD OF THE INVENTION
This invention is in the field of maize breeding, specifically relating to an inbred maize line designated PH36E.
BACKGROUND OF THE INVENTION
The goal of plant breeding is to combine in a single variety or hybrid various desirable traits. For field crops, these traits may include resistance to diseases and insects, tolerance to heat and drought, reducing the time to crop maturity, greater yield, and better agronomic quality. With mechanical harvesting of many crops, uniformity of plant characteristics such as germination and stand establishment, growth rate, maturity, and plant and ear height, is important.
Field crops are bred through techniques that take advantage of the piant's method of pollination. A plant is self-pollinated if pollen from one flower is transferred to the same or another flower of the same plant. A plant is cross-pollinated if the pollen comes from a flower on a different plant.
Plants that have been self-pollinated and selected for type for many generations become homozygous at almost all gene loci and produce a uniform population of true breeding progeny. A cross between two different homozygous lines produces a uniform population of hybrid plants that may be heterozygous for many gene loci. A cross of two plants each heterozygous at a number of gene loci will produce a population of hybrid plants that differ genetically and will not be uniform.
Maize (
zea mays L.
), often referred to as corn in the United States, can be bred by both self-pollination and cross-pollination techniques. Maize has separate male and female flowers on the same plant, located on the tassel and the ear, respectively. Natural pollination occurs in maize when wind blows pollen from the tassels to the silks that protrude from the tops of the ears.
A reliable method of controlling male fertility in plants offers the opportunity for improved plant breeding. This is especially true for development of maize hybrids, which relies upon some sort of male sterility system. There are several options for controlling male fertility available to breeders, such as: manual or mechanical emasculation (or detasseling), cytoplasmic male sterility, genetic male sterility, gametocides and the like.
Hybrid maize seed is typically produced by a male sterility system incorporating manual or mechanical detasseling. Alternate strips of two maize inbreds are planted in a field, and the pollen-bearing tassels are removed from one of the inbreds (female). Providing that there is sufficient isolation from sources of foreign maize pollen, the ears of the detasseled inbred will be fertilized only from the other inbred (male), and the resulting seed is therefore hybrid and will form hybrid plants.
The laborious, and occasionally unreliable, detasseling process can be avoided by using cytoplasmic male-sterile (CMS) inbreds. Plants of a CMS inbred are male sterile as a result of factors resulting from the cytoplasmic, as opposed to the nuclear, genome. Thus, this characteristic is inherited exclusively through the female parent in maize plants, since only the female provides cytoplasm to the fertilized seed. CMS plants are fertilized with pollen from another inbred that is not male-sterile. Pollen from the second inbred may or may not contribute genes that make the hybrid plants male-fertile. Seed from detasseled fertile maize and CMS produced seed of the same hybrid can be blended to insure that adequate pollen loads are available for fertilization when the hybrid plants are grown.
There are several methods of conferring genetic male sterility available, such as multiple mutant genes at separate locations within the genome that confer male sterility, as disclosed in U.S. Pat. Nos. 4,654,465 and 4,727,219 to Brar et al. and chromosomal translocations as described by Patterson in U.S. Pat. Nos. 3,861,709 and 3,710,511. These and all patents referred to are incorporated by reference. In addition to these methods, Albertsen et al., of Pioneer Hi-Bred, U.S. Pat. No. 5,432,068, have developed a system of nuclear male sterility which includes: identifying a gene which is critical to male fertility; silencing this native gene which is critical to male fertility; removing the native promoter from the essential male fertility gene and replacing it with an inducible promoter; inserting this genetically engineered gene back into the plant; and thus creating a plant that is male sterile because the inducible promoter is not “on” resulting in the male fertility gene not being transcribed. Fertility is restored by inducing, or turning “on”, the promoter, which in turn allows the gene that confers male fertility to be transcribed.
There are many other methods of conferring genetic male sterility in the art, each with its own benefits and drawbacks. These methods use a variety of approaches such as delivering into the plant a gene encoding a cytotoxic substance associated with a male tissue specific promoter or an antisense system in which a gene critical to fertility is identified and an antisense to that gene is inserted in the plant (see: Fabinjanski, et al. EPO 89/3010153.8 publication no. 329,308 and PCT application PCT/CA90/00037 published as WO 90/08828).
Another system useful in controlling male sterility makes use of gametocides. Gametocides are not a genetic system, but rather a topical application of chemicals. These chemicals affect cells that are critical to male fertility. The application of these chemicals affects fertility in the plants only for the growing season in which the gametocide is applied (see Carlson, Glenn R., U.S. Pat. No.: 4,936,904). Application of the gametocide, timing of the application and genotype specificity often limit the usefulness of the approach.
Development of Maize Inbred Lines
The use of male sterile inbreds is but one factor in the production of maize hybrids. Plant breeding techniques known in the art and used in a maize plant breeding program include, but are not limited to, recurrent selection, backcrossing, pedigree breeding, restriction length polymorphism enhanced selection, genetic marker enhanced selection and transformation. The development of maize hybrids in a maize plant breeding program requires, in general, the development of homozygous inbred lines, the crossing of these lines, and the evaluation of the crosses. Pedigree breeding and recurrent selection breeding methods are used to develop inbred lines from breeding populations. Maize plant breeding programs combine the genetic backgrounds from two or more inbred lines or various other germplasm sources into breeding pools from which new inbred lines are developed by selfing and selection of desired phenotypes. The new inbreds are crossed with other inbred lines and the hybrids from these crosses are evaluated to determine which of those have commercial potential. Plant breeding and hybrid development, as practiced in a maize plant breeding program, are expensive and time consuming processes.
Pedigree breeding starts with the crossing of two genotypes, each of which may have one or more desirable characteristics that is lacking in the other or which complements the other. If the two original parents do not provide all the desired characteristics, other sources can be included in the breeding population. In the pedigree method, superior plants are selfed and selected in successive generations. In the succeeding generations the heterozygous condition gives way to homogeneous lines as a result of self-pollination and selection. Typically in the pedigree method of breeding five or more generations of selfing and selection is practiced: F
1
→F
2
; F
2
→F
3
; F
3
→F
4
; F
4
→F
5
, etc.
Recurrent selection breeding, backcrossing for example, can be used to improve an inbred line and a hybrid which is made using those inbreds. Backcrossing can be used to transfer a specific desirable trait from one inbred or source to an inbred that lacks that trait. This can be accomplished, for example, by first crossing a superior inbred (recurrent parent) to a donor inbred (non-recurrent pa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Imbred maize line PH36E does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Imbred maize line PH36E, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Imbred maize line PH36E will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2570027

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.