Imbibant grains for bakery and other uses

Food or edible material: processes – compositions – and products – Surface coated – fluid encapsulated – laminated solid... – Isolated whole seed – bean or nut – or material derived therefrom

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S293000, C426S309000, C426S555000, C426S622000, C426S626000, C426S629000

Reexamination Certificate

active

06423355

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to grains (as hereinafter defined) having substantially enhanced capabilities of imbibing moisture and thus having enhanced suitability for use in various bakery products. The present invention also relates to methods for the preparation of grains having substantially enhanced moisture imbibing capability or potential. The products of tile invention may be called inibibant grains.
BACKGROUND TO THE INVENTION
Grains, seeds and particulate fractions derived from grains and seeds are used widely for addition to bakery products—breads, biscuits, muffins, cookies and the like. These grains, seeds and particles derived from them, all of which are hereafter referred to simply as “grains”, when added to bakery products provide nutrition, variety of appearance and novel eating texture. Grains may comprise for example whole grains of wheat, rye, barley, oats, rice, soy, triticale or other seeds such as linseed or sunflower, nuts or particulates such as maize grits, kibbled preparations prepared from rye, barley, soy, wheat or oats and the like. Use of grains which contribute unique colour effects such as yellow maize grits, dark rye, linseed, triticale and red and purple wheats are particularly favoured by consumers.
It is well understood by processors of bakery products containing grains that these grains in the final products as sold to consumers should have become softened by some means before or during the baking process. For example if whole grains of wheat are added to a bread dough, they will remain very hard since their ability to imbibe moisture from the dough mix is minimal. The grains within breads produced in this way will be very hard and dry in the crust—leading to potential for damage to the teeth of consumers. Even the grains in the inside part of the bread (tie “crumb”) remain hard and unacceptable, though less hard than in the crust. Furthermore, these whole grains continue to absorb moisture slowly from the rest of the baked product during storage. This slow and delayed moisture absorption by the grains leads to premature staling of tile baked product as a consequence of this moisture migration.
Up until tile present time, several methods have been used in order to seek to improve the tenderness of grains used in baked products. Examples of these known methods are as follows:
a) Unprocessed grains can be pre-soaked in water for up to several hours prior to addition to the dough or mix. This process is both laborsome, and hazardous in that microorganisms can develop rapidly in soaking grain, with resultant negative effects on wholesomeness and quality of final baked product. It also requires soaking tanks, space and effluent disposal.
b) Unprocessed grains can be steamed and then bumped by passing between rolls of a roller mill. This is an improved process relative to using unprocessed grains, but the results are still less than ideal in the finished products as moisture absorption is too slow, and the rolled grains are fragile and tend to break up during kneading.
c) Unprocessed grains can be preconditioned to a specific moisture content, then subjected to a rapid increase in temperature in a moving airstream. Temperatures of 250° C. to 600° C. or higher are needed to induce a slight degree of expansion of the grains. The grains treated by this process are tenderised to some degree, but do not absorb moisture from the dough any more readily than grains which have been steamed and bumped. They do however remain integral. Special equipment and much energy is required to treat grains in this way. Grain colour and flavour is negatively affected by such high temperature treatment. Tendency to rancidity on storage can result from such high temperature treatment.
d) Unprocessed grains can be reduced in size, such as by kibbling, passing through a groat cutter or by milling to produce grits of a nominated size. In this way the grain particles present a greater surface area than a whole grain, and the particles are not wholly sheathed by a bran layer as in whole grains. However, particles still do not absorb enough moisture to give a very tender product, do not have the appearance of whole grains and continue to absorb moisture from the crumb resulting in premature staling, as described above.
Of the above methods, use of fully presoaked grain gives the best results to produce tenderness in grains within the crumb. However, grains within the crust dry out during baking and become unsatisfactorily hard. What is more, fully presoaked grain requires several hours of preparation and accordingly is inconvenient and requires premeditated action.
As explained above there are problems associated with prior art methods of preparing grains suitable for use in baked products. Preferably the grains used in bakery products should possess the following attributes:
a) Grains should be capable of rapid absorption or imbibition of moisture from a dough or batter such that they become substantially fully imbibed in the freshly baked product.
b) Further absorption by the grains of moisture on storage of die finished baked product should be minimal so as not to induce premature staling of the baked product.
c) Grains should remain tender and friable if during baking they become fully dried out, as in the crust of a loaf of bread. They should, of course maintain tenderness in the soft parts of a baked product, as in the crumb of a bread product.
d) Grains should be available for immediate addition to bakery formulations on demand without die need for presoaking or other preparation steps requiring premeditation.
e) Grains should be available in both whole-grain and in particulate form, depending on the needs of the baker. The physical form of the grain as added to a particular product should be maintained through to the finished product. Thus the grains should be capable of withstanding the physical abuse imposed on bakery dough batters without suffering an unacceptable degree of physical breakdown or damage.
f) Grains should retain to a substantial degree the natural colour, flavour, fibre, vitamin and mineral content of the raw grain since consumers use grain breads for the claimed nutritional quality natural appearance and flavour attributes of such grain addition.
g) Grains should be so treated during manufacturing that the product made available for bakery ingredient usage is, if not sterile, at least does not carry excess microbiological contamination, and preferably is lower in microbiological load than other farinaceous ingredients used in the baked product.
SUMMARY OF THE INVENTION
According to a first embodiment of the present invention there is provided grain suitable for use in baked products, in which grain an extensive capillary network has been induced such that the grain is capable of rapid imbibition of moisture from a dough or batter, as a result of both said capillary network and the presence within the grain of one or more osmotically active solutes.
According to a second embodiment of the present invention there is provided a method of treating grain to ensure suitability for use in baked products comprising the steps of:
a) preconditioning grain to between about 12% and about 30% w/w of moisture;
b) subjecting preconditioned grain to physical action sufficient to induce an internal capillary network without causing grain to fragment;
c) subjecting grain which is a product of step b) above to a solution of osmotically active solutes under conditions to allow absorption of a required amount of solution.
Further, according to the second embodiment, the process may include the further step d) of tempering the grain which is a product of step c).
Still further, according to the second embodiment, the process may include the further step e) of drying grain which is a product of either step c) or step d) to produce grain which is stable for extended storage at ambient conditions.
According to a third embodiment of the invention there is provided grain produced according to the process outlined above.
According to a fourth embodim

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Imbibant grains for bakery and other uses does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Imbibant grains for bakery and other uses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Imbibant grains for bakery and other uses will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2912555

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.