Imaging system with automatic gain control for reflectance...

Television – Special applications – With endoscope

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06462770

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to imaging systems for medical endoscopy, in general and to endoscopic imaging systems for fluorescence and reflectance endoscopy, in particular.
BACKGROUND OF THE INVENTION
One common diagnostic technique used by physicians to detect diseases within a body cavity of a patient is white light optical fiber endoscopy. With this technique, white light is directed into the body cavity via a non-coherent fiber-optic illumination guide of an endoscope. The light illuminates the tissue under examination and the reflected illumination light is gathered and transmitted through a coherent fiber-optic imaging guide of the endoscope. The image formed by the reflected white light at the end of the imaging guide may be viewed directly through the endoscope eyepiece or may be imaged by a color video camera connected to the eyepiece. Images transduced by the camera are then typically transmitted to an image processing/storage device and to a video monitor where they can be viewed by the physician.
To aid physicians performing endoscopy in detecting the presence of cancerous or pre-cancerous tissue, the differences in the autofluorescence (also referred to as native fluorescence) spectrum of normal and abnormal tissue can be exploited. In fluorescence optical fiber endoscopy, a fluorescence excitation light is delivered into the body cavity via the illumination guide of the endoscope. The wavelengths of this light are matched to the absorption spectrum of the naturally occurring fluorescing molecules (or fluorophores) present in the tissue (i.e., to blue light). The fluorescence excitation light causes the tissue in the body cavity to fluoresce with a green and red emission spectrum and the resulting light is collected and transmitted through the optical fiber imaging guide of the endoscope. The resulting image is transduced by a camera that filters out any reflected blue light and divides the autofluorescence into two broad (green and red) spectral bands. The image formed by the light in each spectral band is projected onto a separate intensified CCD (ICCD) transducer and the resulting signal is fed into a control center for processing, storage and, finally, for display on a video monitor. The difference in the autofluorescence emission spectrum of normal and abnormal tissue is presented as a difference in color on the video monitor.
Systems for fluorescence fiber endoscopy are fully described in U.S. Pat. Nos. 5,507,287; 5,590,660, 5,647,368 and 4,786,813 that are assigned to Xillix Technologies Corp. of Richmond, BC, Canada, the assignee of the present invention, and are sold by Xllix as the Xillix® LIFE-Lung Fluorescence Endoscopy System® (the “LIFE-Lung System”). Multi-center clinical trials have shown that by using the Xllix LFE-Lung System as an adjunct to white light endoscopy, the physician's sensitivity in detecting moderate dysplasia, or worse, is 2.71 times greater than the sensitivity of a physician using white light endoscopy alone.
The current LIFE-Lung System has a number of limitations, however. First, the current embodiment of the system requires the physician to manually adjust the gain of the system (i.e., to increase and decrease the camera's sensitivity to the tissue autofluorescence). This is a cumbersome task for the physician to perform, when he/she is simultaneously trying to maneuver the endoscope in the patient. Although automatic gain control circuits for video systems are widely available, they do not provide adequate gain control for the complex scene conditions encountered in imaging autofluorescence with ICCDs. If, for example, the average brightness of an image is increased to an acceptable level, there may be bright spots that can damage the ICCDs. Similarly, if the peak brightness of an image is reduced to prevent localized image saturation, the remainder of the image may become too dark to be recognizable. Furthermore, commonly available average and peak-based automatic gain control circuits do not provide images with a good dynamic range under a variety of viewing conditions, i.e. with an optimized contrast. In endoscopy, these viewing conditions include situations whereby the range of fluorescence light intensities are greater than the dynamic range of ICCDs and the image scenes vary from complex structures (i.e. lots of intensity variations) to flat structures (i.e. homogeneous).
A further complication with the use of an automatic gain control circuit arises due to the fact that the gain relationship between the two channels (green and red) of the imaging system must follow a defined function. If the gain of each channel is varied independently, the colors in the resulting video image will not consistently reflect the spectral differences in the autofluorescence of the tissue.
A second limitation of the current LIFE-Lung System becomes evident when a physician wishes to switch between white light (reflectance) and fluorescence imaging modes. With the current system, the physician must switch light sources and cameras manually (i.e., from a white light illumination source to a fluorescence excitation light source and from an RGB color video camera to the fluorescence camera). One technique for addressing this time consuming process is to have all light sources and cameras connected to the endoscope simultaneously and to utilize a mode switching mechanism to switch from one imaging mode to the other. However, some precaution must be taken in the implementation of a switching mechanism since the ICCDs can be damaged if they are subjected to the bright, reflected illumination light. Care must be taken to ensure that the ICCDs are not energized unless the appropriate illumination conditions exist.
A third limitation of the current LIFE-Lung System is that a physician viewing the image displayed by the system has no way of objectively quantifying the extent of abnormality exhibited by the tissue under examination. The effective use of the system is dependent on such subjective factors as the physician's ability to distinguish color and his/her ability to interpret this color information in the context of other image features. A means to objectively quantify the difference in the autofluorescence spectra of normal and abnormal tissue, or even an additional means to subjectively differentiate these tissues based on their difference in autofluorescence spectra could improve the clinical usability of this system. This can be accomplished using computational techniques using the spectral information of the emitted fluorescence and displaying the results on the monitor together with the images.
In summary, the operation of current fluorescence endoscopy systems may be significantly improved by:
a) an automatic gain control circuit that will optimally adjust the brightness of autofluorescence images and that will maintain a defined relationship between the two channels of the imaging system;
b) a mechanism that allows rapid switching between white light and fluorescence imaging modes, while preventing the accidental exposure of energized ICCDs to damaging light intensities; and
c) a means of utilizing the differences in the autofluorescence emission spectra of normal to abnormal tissue to objectively quantify the degree of abnormality of the tissue.
SUMMARY OF THE INVENTION
The present invention is an imaging system for white light and fluorescence endoscopy that includes a particular automatic gain control (AGC) circuit in the fluorescence imaging mode. The AGC circuit adjusts the gain of the imaging system by adjusting the gain of two high sensitivity imaging devices such as image intensified CCD (ICCDs) transducers in a fluorescence camera head and by adjusting the light intensity of the excitation light source. The video signals from a pair channels (the “green” and “red” channel) of a fluorescence camera are supplied to a set of counters. The counters, consisting of counters connected to a clocking oscillator, measure the length of time each video signal has a magnitude that exceeds a reference

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Imaging system with automatic gain control for reflectance... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Imaging system with automatic gain control for reflectance..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Imaging system with automatic gain control for reflectance... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2925212

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.