Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Radiation-sensitive composition or product
Reexamination Certificate
2000-07-18
2001-04-10
Martin, Roland (Department: 1753)
Radiation imagery chemistry: process, composition, or product th
Electric or magnetic imagery, e.g., xerography,...
Radiation-sensitive composition or product
C430S059100, C430S059600, C430S096000, C430S120400
Reexamination Certificate
active
06214505
ABSTRACT:
RELATED PATENTS AND COPENDING APPLICATION
There are illustrated in U.S. Pat. No. 5,645,965, the disclosure of which is totally incorporated herein by reference, photoconductive imaging members with symmetrical dimeric perylenes, and in U.S. Pat. No. 5,683,842, the disclosure of which is totally incorporated herein by reference, photoconductive imaging members with unsymmetrical dimer perylenes. In U.S. Pat. No. 5,482,811, the disclosure of which is totally incorporated herein by reference, there are illustrated imaging members with photogenerating components of hydroxygallium phthalocyanines and aryl amine charge transport components. These patents also disclose resin binders for the photogenerating and charge transport components.
In copending application U.S. Ser. No. 09/165,595, the disclosure of which is totally incorporated herein by reference, there is illustrated a photoconductive imaging member comprised of an unsymmetrical perylene of the formula
wherein each R and R′ are dissimilar and wherein said R and R′ are hydrogen, alkyl, cycloalkyl, substituted alkyl, aryl, substituted aryl, aralkyl, and substituted aralkyl, and X represents a symmetrical bridging component.
A number of the appropriate components of the imaging members of the above patents and patent application, such as the substrates, charge transport components, photogenerating pigments, and the like, can be selected for the imaging members of the present invention.
BACKGROUND OF THE INVENTION
The present invention is directed generally to imaging members, such as photoconductive imaging members, and which members are comprised of charge transport component binders of, for example, poly(imide-carbonates). The aforementioned poly(imide-carbonate) binders can possess a number of advantages including, for example, resistance to mechanical and corrosive wear induced and caused by the application of an electrochemically aggressive bias charging roll (BCR), and enhanced photoreceptor life with substantially no compromise in electrical performance characteristics. When a BCR is utilized as the charging device, the photoreceptor surface is usually subjected to severe chemical attacks from the corrosive species generated during charging, leading to photoreceptor surface wear during cleaning. For example, when utilizing BCR charging and polycarbonate Z as the transport layer binder, the photoreceptor life is generally about 150,000 to about 250,000 imaging cycles. The poly(imide-carbonate)-based photoreceptors of the present invention generally exhibit a two fold enhancement, that is about 300,000 to about 500,000 imaging cycles in life over the polycarbonate Z-based photoreceptors under similar BCR charging conditions. Various imaging and electrophotographic digital apparatus and processes can incorporate the members of the present invention, and wherein the developed images obtained can be of high resolution, especially in, for example, high speed, over about 65 copies per minute, machines such as the Xerox Corporation 5090.
PRIOR ART
Generally, layered photoresponsive imaging members are described in a number of U.S. patents, such as U.S. Pat. No. 4,265,990, the disclosure of which is totally incorporated herein by reference, wherein there is illustrated an imaging member comprised of a photogenerating layer, and an aryl amine hole transport layer. For example, charge transport layers comprised of aryl diamines dispersed in polycarbonates, like MAKROLON® are known. Examples of photogenerating layer components include trigonal selenium, metal phthalocyanines, vanadyl phthalocyanines, and metal free phthalocyanines. Additionally, there is described in U.S. Pat. No. 3,121,006 a composite xerographic photoconductive member comprised of finely divided particles of a photoconductive inorganic compound dispersed in an electrically insulating organic resin binder. The binder materials disclosed in the '006 patent can comprise resins which are substantially incapable of transporting for any significant distance injected charge carriers generated by the photoconductive particles.
There are also disclosed in U.S. Pat. No. 3,871,882 photoconductive substances comprised of specific perylene-3,4,9,10-tetracarboxylic acid derivative dyestuffs. In accordance with the teachings of this patent, the photoconductive layer is preferably formed by vapor depositing the dyestuff in a vacuum. Also, there is specifically disclosed in this patent dual layer photoreceptors with perylene-3,4,9,10-tetracarboxylic acid diimide derivatives, which have spectral response in the wavelength region of from 400 to 600 nanometers. Further, in U.S. Pat. No. 4,555,463, the disclosure of which is totally incorporated herein by reference, there is illustrated a layered imaging member with a chloroindium phthalocyanine photogenerating layer. In U.S. Pat. No. 4,587,189, the disclosure of which is totally incorporated herein by reference, there is illustrated a layered imaging member with a nonhalogenated perylene pigment photogenerating component. Both of the aforementioned patents disclose an aryl amine component as a hole transport layer, and wherein there can be selected a number of resin binders.
Moreover, there are disclosed in U.S. Pat. No. 4,419,427 electrographic recording media with a photosemiconductive double layer comprised of a first layer containing charge carrier perylene diimide dyes, and a second layer with one or more compounds which are charge transporting materials when exposed to light.
U.S. Pat. No. 4,419,427 discloses the use of highly-loaded dispersions of perylene bisimides, with bis(2,6-dichlorophenylimide) being a preferred material, in binder resins as charge generating layers in devices overcoated with a charge transporting layer such as a poly(vinylcarbazole). U.S. Pat. No. 4,429,029 illustrates the use, in devices similar to those of the '427 patent, of bisimides and bisimidazo perylenes in which the perylene nucleus is halogenated, preferably to an extent where 45 to 75 percent of the perylene ring hydrogens have been replaced by halogen. U.S. Pat. No. 4,587,189, the disclosure of which is totally incorporated herein by reference, illustrates layered photoresponsive imaging members prepared with dispersions or, preferably, vacuum evaporated thin coatings of cis- and trans-bis(benzimidazo)perylene (4a, X=1,2-phenylene) and other perylenes overcoated with hole transporting compositions comprised of a variety of N,N,N′,N′-tetraaryl-4,4′-diaminobiphenyls. U.S. Pat. No. 4,937,164 illustrates the use of perylene bisimides and bisimidazo pigments in which the 1,12-and/or 6,7 position of the perylene nucleus is bridged by one or two sulfur atoms wherein the pigments in the CGL (charge generating layer) layers are either vacuum evaporated or dispersed in binder resins and thereover a layer of tetraaryl biphenyl hole transporting molecules.
In U.S. Pat. No. 4,869,988 and U.S. Pat. No. 4,946,754, the disclosures of which are totally incorporated herein by reference, there are described layered photoconductive imaging members with transport layers incorporating, for example, biarylyl diarylamines, N,N-bis(biarylyl)anilines, and tris(biarylyl)amines as charge transport compounds. In the above-mentioned patents, there are disclosed improved layered photoconductive imaging members comprised of a supporting substrate, a photogenerating layer optionally dispersed in an inactive resinous binder, and in contact therewith a charge transport layer comprised of the above-mentioned charge transport compounds, or mixtures thereof dispersed in a number of resinous binders.
It is also indicated in the aforementioned patents that there may be selected as resin binders for the charge transport molecules those components as illustrated in U.S. Pat. No. 3,121,006 including polycarbonates, polyesters, epoxy resins, polyvinylcarbazole; and also wherein for the preparation of the charge transport layer with a polycarbonate there is selected methylene chloride as a solvent.
Although imaging members with various
Hsiao Cheng-Kuo
Ong Beng S.
Qi Yu
Martin Roland
Palazzo E. O.
Xerox Corporation
LandOfFree
Imaging members does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Imaging members, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Imaging members will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2526804