Imaging materials containing peptoid substituted azole couplers

Radiation imagery chemistry: process – composition – or product th – Color imaging process – Using identified radiation sensitive composition in the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S383000, C430S386000, C430S543000, C430S554000, C430S555000, C430S558000

Reexamination Certificate

active

06514679

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is related to an application cofiled herewith under Ser. No. 10/021,408 and directed to a process for the preparation of a coupler useful in the invention.
FIELD OF THE INVENTION
This invention relates to silver halide based photographic elements containing peptoid-substituted azole dye-forming couplers, novel azomethine dyes formed therefrom, and the couplers themselves. The photographic elements produce dyes that exhibit desirable spectral absorption characteristics and good stability.
BACKGROUND OF THE INVENTION
In the photographic art color images are formed by the exposure of a silver halide light sensitive element containing organic dye forming couplers followed by processing in aqueous developer solutions containing an aromatic primary amine color developing agent. The resultant dyes formed are yellow, magenta, or cyan and result in the formation of a color image in the photographic element.
In the ink jet art images are formed by the deposition of a preformed colored ink or pigment upon a receiver material by use of a cartridge head loaded with a solution or dispersion of preformed dyes or pigments. The resultant images are colored as a result of the deposition of a varied mixture of the preformed inks or pigments.
Both of these imaging methods require novel color forming materials to improve the properties of the resultant images. Color forming image dyes must have desirable hues and good stability with little or no fading or discoloration under storage in the dark or when exposed to light. The couplers which form these dyes should have good coupling efficiency and lead to dye images with high contrast and high density in areas of maximum exposure and low density in areas of minimum exposure.
Couplers which have been recently received considerable interest in the imaging art include the pyrazolo[5,1-c]-1,2,4-triazole and the pyrazolo[1,5-b]-1,2,4-triazole heterocycles as shown below.
Other couplers include the imidazole, benzimidazole, and pyrroloazole couplers such as:
Other examples are the pyrazolone couplers as discussed hereinafter.
The R groups are substituents and X is H or a coupling-off group. It is well recognized by those skilled in the art that modifications of the structure of the substituents on the pyrazolotriazole heterocycle can have important effects on the dyes formed from these couplers, including improvements in dye image stability, etc. Thus, the researcher skilled in the art of photographic couplers is always seeking new substituents on the pyrazolotriazole heterocycle with an aim to discover ever better image dye properties. In recent years many patents have been issued on variations of the 3-alkyl substituted pyrazolo[5,1-c]-1,2,4-triazole couplers. These couplers have the required hue, contrast, and efficiency properties necessary to produce superior image dyes in modern photographic materials. Nevertheless, new substituent research continues.
In Bailey's original patent, U.S. Pat. No. 3,810,761 (May 1974), a wide range of substituents are described as useful in varying the hue and properties of pyrazolo[5,1-c]-1,2,4-triazole image dyes. In Harder's patent, U.S. Pat. No. 5,925,503 (July 1999), a tetramethylethyl link in the 3-position of the pyrazolo[5,1-c]-1,2,4-triazole is reported to provide image dyes with superior light stability and hue. In Harder's patented structure, see Coupler Structure A below, W is reported to represent C(O)R
5
, SO
2
R
5
, or P(O)(OR
6
)
2
.
The properties of a pyrazolo[5,1-c]-1,2,4-triazole coupler similar to Structure A in which W is reported to be a CHR structural unit would be of interest to the skilled photographic coupler researcher. However, a synthesis method for such a pyrazolo[5,1-c]-1,2,4-triazole coupler is unknown. This is because the alkylation of the pendant amino functional group in Structure A by typical alkylating agents such as methyliodide, ethyliodide, methyltosylate, etc., results in the simultaneous alkylation of the ring nitrogen centers at position 1 and position 5 of the pyrazolo[5,1-c]-1,2,4-triazole ring thus producing products which contain multiple alkylated centers. Thus, the synthesis of new and improved pyrazolo[5,1-c]-1,2,4-triazoles has been limited in the past to those materials of the type described in Harder U.S. Pat. No. 5,925,503 (July 1999).
Recently, Zuckermann, et. al., have described the solid phase organic chemistry synthesis of N-(substituted)glycines, a.k.a. “peptoids”, from available and inexpensive starting materials. As used herein, a “peptoid” group means a substituent having a primary amine group linked to the remainder of the coupler compound, “Coup”, with or without a linking group, through a chain of acetamide groups as in the following:
The technique of solid phase synthesis is known to those in the organic chemistry synthesis art and has been described in recent journal articles and books. The solid phase synthesis of the peptoid materials described by Zuckermann is assembled by repetition of a two step sequence from two readily available starting materials. The first step is acylation of Rink (more specifically described in the “Synthesis” section hereof) resin with bromoacetic acid. The second step is the addition of a primary amine resulting in a nucleophilic displacement of the bromine. Repetition of these two steps is reported to assemble an oligomeric peptoid. The choice of amines to be used in the assembly of the peptoid ballasts will be made by those skilled in the art based upon desired characteristics of size, shape, flexibility, degree of branching, molecular weight, and hydrophobicity among other attributes.
It has now been found that the use of the alkylation protocol as reported above does not result in the multiple alkylation of the ring nitrogen centers at position 1 and position 5 of the pyrazoloazole ring as demonstrated by such typical alkylating agents as methyliodide, ethyliodide, and methyltosylate, etc., but instead, results in the alkylation of the pendant amino functional group shown in Coupler Structure A without further alkylation occuring. This straight-forward synthesis enables the production for the first time of pyrazoloazole couplers bearing peptoid substituents in the W position of Coupler Structure A and enables the production of photographic elements and dyes using the couplers.
It would be useful to have photographic materials containing novel coupler compounds that produce dyes that exhibit desirable spectral absorption characteristics and good stability.
SUMMARY OF THE INVENTION
In accordance with the present invention there is provided a photographic element comprising a silver halide emulsion and a peptoid-containing azole dye-forming coupler. The invention also includes the peptoid couplers and the dyes resulting from the reaction of the couplers with a color developer, and an imaging process employing the photographic element.
The azole formed dyes exhibit desirable spectral absorption characteristics and good stability.
DETAILED DESCRIPTION OF THE INVENTION
A detailed description of the invention is provided as follows. A peptoid group is a functionality depicted below as defined by R. N. Zuckermann, et. al.,
J. Am. Chem. Soc.,
1992, 10646-10647 in which R is generally defined as a side chain and X as an NH
2
, and n is a number equal to or greater than zero,
or, for purposes of this invention,
The couplers useful in the element of the invention contain a peptoid group represented by the above formula. The couplers form dyes having desirable hue and stability for imaging. They conveniently contain up to 7, suitably 2-4 acetamide groups, and they are desirably linked to the coupler nucleus by a tetramethyl ethyl group.
Azole couplers are well-known and include one ring as in the pyrazolones or two fused 5-membered rings at least one being an azole. Azole couplers include, for example, the pyrazolo[5,1-c]-1,2,4-triazole, pyrazolo[1,5-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Imaging materials containing peptoid substituted azole couplers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Imaging materials containing peptoid substituted azole couplers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Imaging materials containing peptoid substituted azole couplers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3141323

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.