Radiation imagery chemistry: process – composition – or product th – Imaged product – Structurally defined
Reexamination Certificate
2001-08-16
2003-07-29
Schilling, Richard L. (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Imaged product
Structurally defined
C430S014000, C430S220000, C430S496000, C430S510000, C430S523000, C430S533000, C430S536000, C430S539000, C430S961000
Reexamination Certificate
active
06599669
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to imaging materials. In a preferred form, it relates to nacreous photographic reflective paper.
BACKGROUND OF THE INVENTION
Prior art reflective imaging output materials such as silver halide reflective images or ink jet reflective images typically comprise imaging layers applied to a white reflective base material. The white reflective base reflects ambient light back to the observer's eye to form the image in the brain. Prior art base materials typically utilize white reflecting pigments such as TiO
2
or barium sulfate in a polymer matrix to form a white reflective base material. Prior art reflective photographic papers also contain white pigments in the support just below the silver halide imaging layers to obtain image whiteness and sharpness during image exposure, as the white pigment reduces the amount exposure light energy scattered by the cellulose paper core. Details on the use of white pigments in highly loaded coextruded layers to obtain silver halide image sharpness and whiteness are recorded in U.S. Pat. No. 5,466,519.
It has been proposed in U.S. Pat No. 5,866,282 (Bourdelais et al) to utilize a composite support material with laminated biaxially oriented polyolefin sheets as a photographic imaging material. In U.S. Pat. No.5,866,282, biaxially oriented polyolefin sheets are extrusion laminated to cellulose paper to create a support for silver halide imaging layers. The biaxially oriented sheets described in U.S. Pat. No. 5,866,282 have a microvoided layer in combination with coextruded layers that contain white pigments such as TiO
2
above and below the microvoided layer. The composite imaging support structure described in U.S. Pat. No. 5,866,282 has been found to be more durable, sharper and brighter than prior art photographic paper imaging supports that use cast melt extruded polyethylene layers coated on cellulose paper.
It has been proposed in U.S. Pat. No. 6,071,680 (Bourdelais et al) to utilize a voided polyester sheet coated with light sensitive silver halide imaging layers for use as photographic output material. The voided layer in U.S. Pat. No. 6,071,680 improves opacity, image lightness, and image brightness compared to prior art polyethylene melt extrusion coated cellulose paper base materials. The image base proposed in U.S. Pat. No. 6,071,680 also contains an integral polyolefin skin layer to facilitate imaging layer adhesion at the time of manufacture and during the processing of silver halide imaging layers.
There, however, remains a continuing need for improvements to the appearance of imaging output materials. It has been shown that consumers, in addition to reflective output material, also prefer nacreous images. Nacreous images exhibit a pearly or nacreous luster, an iridescent play of colors, and a brilliant luster that appears in three dimensions. Nacreous appearance can be found in nature if one examines a pearl or the polished shell of
Turbo marmoratus.
A nacreous photographic element with a microvoided sheet of opalescence is described in U.S. Pat. No. 5,888,681 (Gula et al). In U.S. Pat. No. 5,888,681 microvoided polymer sheets with microvoided polymer layer located between a cellulose paper base and developed silver halide imaging provide an image with an opalescence appearance. The nacreous appearance is created in U.S. Pat. No. 5,888,681 by providing multiple internal reflections in the voided layer of the polymer sheet. While the opalescence appearance is present in the image, the image suffers from a loss of image sharpness or acutance, a higher density minimum position, and a decrease in printing speed compared to a typical photographic image formed on a white, reflecting base. It would be desirable if the opalescent look of the image could be maintained while improving printing speed, increasing sharpness, and decreasing density minimum. Also, while the voided polymer does provide an excellent nacreous image, the voided layer, because it is pre-fractured, is subjected to permanent deformation, thus reducing the quality of the image.
In addition to the use of white pigments in reflective consumer photographs, white pigments are also utilized in photographic display materials for diffusion of illumination light source. While the use of white pigments in display materials does provide the desired diffusion and reflection properties, the white pigments tend to change the hue angle of the color dyes in a developed photographic display image. Dye hue angle is a measure in CIElab color space of that aspect of color vision that can be related to regions of the color spectrum. For color photographic systems there is a perceptual preferred dye hue angle for the yellow, magenta, and cyan dyes. It has been found that when photographic dyes are coated on support containing white pigments, the hue angle of the developed image changes compared to the hue angle of the dyes coated onto a transparent support. The hue angle change of photographic dyes caused by the presence of white pigments often reduces the perceived quality of the dyes compared to the dye set coated on a transparent base that is substantially free of white pigments. It would be desirable if a developed photographic dye set coated on a reflective support material had a dye hue angle that was not significantly different than the same dye set coated on a transparent support.
Nacreous pigments added to a matrix, such as paint or plastic, have been known to exhibit a nacreous appearance. The prior art use of the nacreous pigments have been for pigmenting paints, printing inks, plastics, cosmetics, and glazes for ceramics and glass. Nacreous pigments are dispersed in a matrix and then painted or printed onto a substrate. Pearl luster pigments containing titanium dioxide have been successfully employed for many years. They are constructed in accordance with the layer substrate principle, with mica being employed virtually without exception as substrate.
Mica pigments are used widely in the printing and coating industries, in cosmetology, and in polymer processing. They are distinguished by interference colors and a high luster. For the formation of extremely thin layers, however, mica pigments are not suitable, since the mica itself, as a substrate for the metal-oxide layers of the pigment, has a thickness of from 200 to 1200 nm. A further disadvantage is that the thickness of the mica platelets within a certain fraction defined by the platelet size in some cases varies markedly about a mean value. Moreover, mica is a naturally occurring mineral which is contaminated by foreign ions. Furthermore, technically highly complex and time-consuming processing steps are required including, in particular, grinding and classifying.
Pearl luster pigments based on thick mica platelets and coated with metal oxides have, owing to the thickness of the edge, a marked scatter fraction, especially in the case of relatively fine particle-size distributions below 20 micrometers. As a substitute for mica, it has been proposed to use thin glass flakes which are obtained by rolling a glass melt with subsequent grinding. Indeed, interference pigments based on such materials exhibit color effects superior to those of conventional, mica-based pigments. Disadvantages, however, are that the glass flakes have a very large mean thickness of about 10-15 micrometers and a very broad thickness distribution (typically between 4 and 20 micrometers), whereas the thickness of interference pigments is typically not more than 3 micrometers.
In U.S. Pat. No. 5,340,692 (Vermeulen et al) an imaging receiving material with nacreous pigment for producing contone images according to the silver salt diffusion process is disclosed. According to the process disclosed in U.S. Pat. No. 5,340,692, contone images with an antique look can be obtained utilizing the silver salt diffusion transfer process without the need of special processing liquids using a nacreous pigment in the imaging receiving layer or located between the support and the image receiving layer. The silver hali
Aylward Peter T.
Bourdelais Robert P.
Camp Alphonse D.
Ferguson Pamela M.
Leipold Paul A.
Schilling Richard L.
LandOfFree
Imaging element with nacreous pigment does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Imaging element with nacreous pigment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Imaging element with nacreous pigment will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3032103