Imaged nonwoven fabrics

Textiles: manufacturing – Textile product fabrication or treatment – Fiber entangling and interlocking

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C028S163000, C028S167000

Reexamination Certificate

active

06502288

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to methods of making nonwoven fabrics, and more particularly to a method of manufacturing at a high rate of speed a nonwoven fabric exhibiting improved physical characteristics while retaining image, permitting use of the fabric in a wide variety of consumer applications.
BACKGROUND OF THE INVENTION
The production of conventional textile fabrics is known to be a complex, multi-step process. The production of fabrics from staple fibers begins with the carding process where the fibers are opened and aligned into a feed stock known as sliver. Several strands of sliver are then drawn multiple times on a drawing frames to further align the fibers, blend, improve uniformity as well as reduce the sliver's diameter. The drawn sliver is then fed into a roving frame to produce roving by further reducing its diameter as well as imparting a slight false twist. The roving is then fed into the spinning frame where it is spun into yarn. The yarns are next placed onto a winder where they are transferred into larger packages. The yarn is then ready to be used to create a fabric.
For a woven fabric, the yarns are designated for specific use as warp or fill yarns. The fill yarns (which run on the y-axis and are known as picks) are taken straight to the loom for weaving. The warp yarns (which run on the x-axis and are known as ends) must be further processed. The large packages of yarns are placed onto a warper frame and are wound onto a section beam were they are aligned parallel to each other. The section beam is then fed into a slasher where a size is applied to the yarns to make them stiffer and more abrasion resistant, which is required to withstand the weaving process. The yarns are wound onto a loom beam as they exit the slasher, which is then mounted onto the back of the loom. The warp yarns are threaded through the needles of the loom, which raises and lowers the individual yarns as the filling yarns are interested perpendicular in an interlacing pattern thus weaving the yarns into a fabric. Once the fabric has been woven, it is necessary for it to go through a scouring process to remove the size from the warp yarns before it can be dyed or finished. Currently, commercial high speed looms operate at a speed of 1000 to 1500 picks per minute, where a pick is the insertion of the filling yarn across the entire width of the fabric. Sheeting and bedding fabrics are typically counts of 80×80 to 200×200, being the ends per inch and picks per inch, respectively. The speed of weaving is determined by how quickly the filling yarns are interlaced into the warp yarns, therefore looms creating bedding fabrics are generally capable of production speeds of 5 inches to 18.75 inches per minute.
In contrast, the production of nonwoven fabrics from staple fibers is known to be more efficient than traditional textile processes as the fabrics are produced directly from the carding process.
Nonwoven fabrics are suitable for use in a wide variety of applications where the efficiency with which the fabrics can be manufactured provides a significant economic advantage for these fabrics versus traditional textiles. However, nonwoven fabrics have commonly been disadvantaged when fabric properties are compared, particularly in terms of surface abrasion, pilling and durability in multiple-use applications. Hydroentangled fabrics have been developed with improved properties which are a result of the entanglement of the fibers or filaments in the fabric providing improved fabric integrity. Subsequent to entanglement, fabric durability can be further enhanced by the application of binder compositions and/or by thermal stabilization of the entangled fibrous matrix.
U.S. Pat. No. 3,485,706, to Evans, hereby incorporated by reference, discloses processes for effecting hydroentanglement of nonwoven fabrics. More recently, hydroentanglement techniques have been developed which impart images or patterns to the entangled fabric by effecting hydroentanglement on three-dimensional image transfer devices. Such three-dimensional image transfer devices are disclosed in U.S. Pat. No. 5,098,764, hereby incorporated by reference, with the use of such image transfer devices being desirable for providing a fabric with enhanced physical properties as well as an aesthetically pleasing appearance.
For specific applications, a nonwoven fabric must exhibit a combination of specific physical characteristics. For example, fabrics used in the home should be soft and drapeable, yet withstand home laundering, and be resistant to abrasion (which can result in fabric pilling). Fabrics used in the home must also exhibit sufficient strength and tear resistance, and colorfastness. These are among the characteristics which have been identified as being desirable for so-called “top-of-the-bed” applications, such as comforters, pillows, dust ruffles, and the like.
Heretofore, attempts have been made to develop nonwoven fabrics exhibiting the necessary aesthetic and physical properties. U.S. Pat. No. 3,933,304, discloses a washable spunlaced nonwoven cloth, with this patent contemplating use of a PAE binder composition (polyamide-amine-epichorohydrin) with inclusion of cotton fiber in the fibrous matrix.
U.S. Pat. No. 3,988,343, discloses a nylon fabric treated with a mixture of acrylic polymer and latex binder with tinting pigments. U.S. Pat. No. 5,874,159 contemplates providing a spunlaced fabric structure with durability by the provision of a bonding material in the form of a thermal plastic polymer, which may be provided in the form of a net, an apertured or punctured film, or molten drop form. The bonding material acts to join layers or laminations from which the fabric is formed.
Notwithstanding various attempts in the prior art to develop a nonwoven fabric acceptable for home use applications, a need continues to exist for a nonwoven fabric which provides the desired softness and drapeability, as well as the requisite mechanical characteristics.
SUMMARY OF THE INVENTION
The present invention is directed to a method of forming a nonwoven fabric, which exhibits enhanced physical characteristics which are achieved through enhanced imaging and patterning on a three-dimensional image transfer device. In particular, the present invention contemplates that a fabric is formed from a precursor web which is subjected to hydroentanglement on a moveable imaging surface of the three-dimensional image transfer device. Enhanced imaging is achieved, with resultant improvement in physical properties, by advancing the precursor web onto the imaging surface at a rate substantially equal to the rate at which the imaging surface moves. By formation in this fashion, hydroentanglement of the precursor web results in improved entanglement of the fibrous matrix from which the web is formed, comprising either staple length fibers and/or filaments. Enhancement of Z-direction entanglement has been observed, with resultant fabrics exhibiting characteristics which, in many important respects, are like those of traditional woven fabrics.
In accordance with the present invention, a method of making a nonwoven fabric embodying the present invention includes the steps of providing a precursor web comprising a fibrous matrix. While use of staple length fibers is typical, the fibrous matrix may comprise substantially continuous filaments. In a particularly preferred form, the fibrous matrix is carded and cross-lapped to form a precursor web. It is also preferred that the precursor web be subjected to pre-entangling on a foraminous forming surface prior to imaging and patterning.
The present method further contemplates the provision of a three-dimensional image transfer device having a movable imaging surface. In a typical configuration, the image transfer device may comprise a drum-like apparatus which is rotatable with respect to one or more hydroentangling manifolds.
The precursor web is advanced onto the imaging surface of the image transfer device so that the web moves together with the imaging surface. Hy

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Imaged nonwoven fabrics does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Imaged nonwoven fabrics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Imaged nonwoven fabrics will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3035497

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.