Radiant energy – Source with recording detector – Using a stimulable phosphor
Reexamination Certificate
2001-11-30
2004-12-28
Gagliardi, Albert (Department: 2878)
Radiant energy
Source with recording detector
Using a stimulable phosphor
C250S461200, C250S458100
Reexamination Certificate
active
06835946
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to an image reading method and apparatus and, particularly, to an image reading method and apparatus which can produce low noise image data rapidly and with a simple operation by irradiating an image carrier including two-dimensionally distributed spots of a labeling substance such as a fluorescent substance, a radioactive labeling substance or the like with a stimulating ray to excite the labeling substance and photoelectrically detecting light released from the labeling substance.
DESCRIPTION OF THE PRIOR ART
There is known a radiation diagnosis system comprising the steps of employing, as a detecting material for the radiation, a stimulable phosphor which can absorb and store the energy of radiation upon being irradiated therewith and release a stimulated emission whose amount is proportional to that of the received radiation upon being stimulated with an electromagnetic wave having a specific wavelength range, storing and recording the energy of radiation transmitted through an object in the stimulable phosphor contained in a stimulable phosphor layer formed on a stimulable phosphor sheet, scanning the stimulable phosphor layer with an electromagnetic wave to excite the stimulable phosphor, photoelectrically detecting the stimulated emission released from the stimulable phosphor to produce digital image signals, effecting image processing on the obtained digital image signals, and reproducing an image on displaying means such as a CRT or the like or a photographic film (see, for example, Japanese Patent Application Laid Open Nos. 55-12429, 55-116340, 55-163472, 56-11395, 56-104645 and the like).
There is also known an autoradiography detection system comprising the steps of employing a similar stimulable phosphor as a detecting material for the radiation, introducing a radioactive labeling substance into an organism, using the organism or a part of the tissue of the organism as a specimen, placing the specimen and a stimulable phosphor sheet formed with a stimulable phosphor layer together in layers for a certain period of time, storing and recording radiation energy in a stimulable phosphor contained in the stimulable phosphor layer, scanning the stimulable phosphor layer with an electromagnetic wave to excite the stimulable phosphor, photoelectrically detecting the stimulated emission released from the stimulable phosphor to produce digital image signals, effecting image processing on the obtained digital image signals, and reproducing an image on displaying means such as a CRT or the like or a photographic film (see, for example, Japanese Patent Publication No. 1-60784, Japanese Patent Publication No. 1-60782, Japanese Patent Publication No. 4-3952 and the like).
There is further known a chemiluminescence detection system using as a detecting material for detecting light a stimulable phosphor which can absorb, store and record the light energy when it is irradiated with light and which, when it is then stimulated by an electromagnetic wave having a specified wavelength, can release stimulated emission whose light amount corresponds to the amount of light radiation with which it was irradiated, which comprises the steps of selectively labeling a fixed high molecular substance such as a protein or a nucleic acid sequence with a labeling substance which generates chemiluminescent emission when it contacts a chemiluminescent substance, contacting the high molecular substance selectively labeled with the labeling substance and the chemiluminescent substance, photoelectrically detecting the chemiluminescent emission in the wavelength of visible light generated by the contact of the chemiluminescent substance and the labeling substance and producing digital image signals, effecting image processing thereon, and reproducing a chemiluminescent image on a display means such as a CRT or a recording material such as a photographic film, thereby obtaining information relating to the high molecular substance such as genetic information (see, for example, U.S. Pat. No. 5,028,793, British Patent Publication GB No. 2,246,197A and the like).
There are further known an electron microscopic detection system and a radiographic diffraction image detection system comprising the steps of employing, as a detecting material for an electron beam or radiation, a stimulable phosphor which can absorb and store the energy of an electron beam or radiation upon being irradiated therewith and release a stimulated emission whose amount is proportional to that of the received electron beam or radiation upon being stimulated with an electromagnetic wave having a specific wavelength range, irradiating a metal or nonmetal specimen with an electron beam and effecting elemental analysis, composition analysis or structural analysis of the specimen by detecting a diffraction image or a transmission image, or irradiating the tissue of an organism with an electron beam and detecting an image of the tissue of the organism, or irradiating a specimen with radiation, detecting a radiographic diffraction image and effecting structural analysis of the specimen (see, for example, Japanese Patent Application Laid Open No. 61-51738, Japanese Patent Application Laid Open No. 61-93538, Japanese Patent Application Laid Open No. 59-15843 and the like).
Unlike a system using a photographic film, according to these systems using the stimulable phosphor as a detecting material for an image, development, which is chemical processing, becomes unnecessary. Further, it is possible reproduce a desired image by effecting image processing on the obtained image data and effect quantitative analysis using a computer. Use of a stimulable phosphor in these processes is therefore advantageous.
On the other hand, a fluorescence detecting system using a fluorescent substance as a labeling substance instead of a radioactive labeling substance in the autoradiographic system is known. According to this system, it is possible by reading a fluorescent image to study a genetic sequence, to study the expression level of a gene, and to effect separation or identification of protein or estimation of the molecular weight or properties of protein or the like. For example, this system can perform a process including the steps of distributing a plurality of DNA fragments on a gel support by means of electrophoresis after a fluorescent dye was added to a solution containing a plurality of DNA fragments to be distributed, or distributing a plurality of DNA fragments on a gel support containing a fluorescent dye, or dipping a gel support on which a plurality of DNA fragments have been distributed by means of electrophoresis in a solution containing a fluorescent dye, thereby labeling the electrophoresed DNA fragments, exciting the fluorescent dye by a stimulating ray to cause it to release fluorescent light, detecting the released fluorescent light to produce an image and detecting the distribution of the DNA fragments on the gel support. This system can also perform a process including the steps of distributing a plurality of DNA fragments on a gel support by means of electrophoresis, denaturing the DNA fragments, transferring at least a part of the denatured DNA fragments onto a transfer support such as a nitrocellulose support by the Southern-blotting method, hybridizing a probe prepared by labeling target DNA and DNA or RNA complementary thereto with the denatured DNA fragments, thereby selectively labeling only the DNA fragments complementary to the probe DNA or probe RNA, exciting the fluorescent dye by a stimulating ray to cause it to release fluorescent light, detecting the released fluorescent light to produce an image and detecting the distribution of the target DNA on the transfer support. This system can further perform a process including the steps of preparing a DNA probe complementary to DNA containing a target gene labeled by a labeling substance, hybridizing it with DNA on a transfer support, combining an enzyme with the complementary DNA labeled by a labeling substance, causing the e
LandOfFree
Image reading method and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Image reading method and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image reading method and apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3306303