Image quality improvement for liquid crystal display

Computer graphics processing and selective visual display system – Plural physical display element control system – Display elements arranged in matrix

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S089000

Reexamination Certificate

active

06727872

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to liquid crystal display (LCD) devices, and more particularly to a system, apparatus and method for improving image quality by limiting the difference between gray scale values of adjacent pixels.
BACKGROUND OF THE INVENTION TECHNOLOGY
Liquid crystal displays (LCDs) are commonly used in devices such as portable televisions, portable computers, control displays, and cellular phones to display information to a user. LCDs act in effect as a light valve, i.e., they allow transmission of light in one state, block the transmission of light in a second state, and some include several intermediate stages for partial transmission. When used as a high resolution information display, as in one application of the present invention, LCDs are typically arranged in a matrix configuration with independently controlled display areas called “pixels” (the smallest segment of the display). Each individual pixel is adapted to selectively transmit or block light from a backlight (transmission mode), from a reflector (reflective mode), or from a combination of the two (transflective mode).
A LCD pixel can control the transference for different wavelengths of light. For example, an LCD can have pixels that control the amount of transmission of red, green, and blue light independently. In some LCDs, voltages are applied to different portions of a pixel to control light passing through several portions of dyed glass. In other LCDs, different colors are projected onto the area of the pixel sequentially in time. If the voltage is also changed sequentially in time, different intensities of different colors of light result. By quickly changing the wavelength of light to which the pixel is exposed an observer will see the combination of colors rather than sequential discrete colors. Several monochrome LCDs can also result in a color display. For example, a monochrome red LCD can project its image onto a screen. If a monochrome green and monochrome blue LCD are projected in alignment with the red, the combination will be a full range of colors.
The monochrome resolution of an LCD can be defined by the number of different levels of light transmission or reflection that each pixel can perform in response to a control signal. A second level is different from a first level when a user can tell the visual difference between the two. An LCD with greater monochrome resolution will look clearer to the user.
LCDs are actuated pixel-by-pixel, either one at a time or a plurality simultaneously. A voltage is applied to each pixel area by charging a capacitor formed in the pixel area. The liquid crystal responds to the charged voltage of the pixel capacitance by twisting and thereby transmitting a corresponding amount of light. In some LCDs an increase in the actuation voltage decreases transmission, while in others it increases transmission. When multiple colors are involved for each pixel, multiple voltages are applied to the pixel at different positions (different capacitance areas being charged of a pixel) or times depending upon the LCD illumination method. Each voltage controls the transmission of a particular color. For example, one pixel can be actuated for only blue light to be transmitted while another for green light, and a third for red light. A greater number of different light levels available for each color results in a much greater number of possible color combinations. Colors may be combined from a red pixel, a green pixel and a blue pixel, each residing on a different LCD, to produce any desired combined pixel color. The three LCDs (red-green-blue or RGB) are optically aligned so that the resulting light from each of the corresponding RGB pixels produces one sharp color pixel for each of the pixels in the LCD pixel matrix. The LCD pixel matrix is adapted for displaying one frame of video per light strobe. Each light strobe (RGB) produces one video frame. A sequence of video frames produces video images that may change over time (e.g., motion video).
Converting a complex digital signal that represents an image or video into voltages to be applied to charge the capacitance of each pixel of an LCD involves circuitry that can limit the monochrome resolution. The signals necessary to drive a single color of an LCD are both digital and analog. It is digital in that each pixel requires a separate selection signal, but it is analog in that an actual voltage is applied to charge the capacitance of the pixel in order to determine light transmission thereof.
Each pixel in the array of the LCD is addressed by both a column (vertical) driver and a row (horizontal) driver. The column driver turns on an analog switch that connects an analog voltage representative of the video input (control voltage necessary for the desired liquid crystal twist) to the column, and the row driver turns on a second analog switch that connects the column to the desired pixel.
The video inputs to the LCD are analog signals centered around a center reference voltage of typically from about 6.5 to 8.0 volts. A voltage equal or close to this center reference voltage is called “VCOM” and is supplied to the LCD Cover glass electrode which is a transparent conductive coating on the inside face (liquid crystal side) of the cover glass. This transparent conductive coating is typically Indium Tin Oxide (ITO).
One frame of video pixels are run at voltages above the center reference voltage (positive inversion) and for the next frame the video pixels are run at voltages below the center reference voltage (negative inversion). Alternating between positive and negative inversions results in substantially a zero net DC bias at each pixel. This substantially reduces the “image sticking” phenomena.
LCD technology has reduced the size of displays from full screen sizes to minidisplays less than 1.3 inches diagonal measurement, to microdisplays that require a magnification system. Microdisplays may be manufactured using semiconductor integrated circuit (IC) dynamic random access memory (DRAM) process technologies. The microdisplays consist of a silicon substrate backplane, a cover glass and an intervening liquid crystal layer. The microdisplays are arranged as a matrix of pixels arranged in a plurality of rows and columns, wherein an intersection of a row and a column defines a position of a pixel in the matrix. To incident light, each pixel is a liquid crystal cell above a reflecting mirror. By changing the liquid crystal state, the incident light can be made to change its polarization. The silicon backplane is an array of pixels, typically 10 to 20 microns in pitch. Each pixel has a mirrored surface that occupies most of the pixel area. The mirrored surface is also an electrical conductor that forms a pixel capacitor with the ITO layer as the other plate of the pixel capacitor (common to all pixel capacitors in the matrix of pixels. As each pixel capacitor is charged to a certain pixel value, the liquid crystals between the plates of the pixel capacitors “twist” or “untwist” which affects the polarization of the light incident to the pixels (reflections from the pixel mirrors).
Microdisplays may have an analog video signal input (“analog display”) or a digital video signal input (digital display). Analog displays, generally, are addressed in a raster mode, while the pixels in a digital display may be addressed like a DRAM, in a random order. Random access allows updating only pixels requiring updating, thus saving on processing time and associated power consumption.
A problem exists in small LCDs, especially microdisplays, which have small pixel cell areas compared to the area of the gaps between the pixel cells. Fringe fields between the pixels are therefore significant in magnitude and the area affected by fringe fields is significant with respect to the overall pixel area. This leads to image degradation of increasing severity for small LCDs and high driving voltages. Limiting the driving voltages helps, but reduces the available contrast of the LCD.
SUMMARY OF THE INVENTION
The present

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Image quality improvement for liquid crystal display does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Image quality improvement for liquid crystal display, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image quality improvement for liquid crystal display will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3259020

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.