Image processing with modified ramp signal

Radiant energy – Photocells; circuits and apparatus – Photocell controlled circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S2140RC, C348S296000

Reexamination Certificate

active

06521880

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to improvements in image processing techniques, and in particular to an improved method of producing an image from an array of detectors, and to apparatus arranged to perform the processing. It is particularly, but not exclusively, applicable to the field of uncooled thermal imaging.
2. Discussion of Prior Art
Many types of detector are known which are sensitive to incident radiation such as infra-red light. Typically, these detectors comprise a sensing element which produces an electrical output signal dependent upon the flux of the radiation incident upon the sensing element. By constructing an array of such detectors, and providing suitable focusing lenses, a two dimensional image of a scene can be produced. In its simplest form, each detector in an array produces an output signal dependent upon the amplitude of incident radiation which is amplified and used to drive a pixel in a VDU, television screen or monitor.
One well known detector array is known as a pyroelectric array. Each detector element in the array comprises a capacitive element. An output current is produced by the capacitive element due to incident radiation, which is amplified through a single stage amplifier. The density in which the detectors are packaged and the requirement for a separate amplifier for each detector element places severe restrictions on the complexity of the electronic processing associated with each detector in order to locate each amplifier adjacent each detector in the array.
A problem with the construction of such arrays arises because the gain of each detector/amplifier combination will be different due to manufacturing tolerances. Thus, if the output image was simply produced by feeding the output of the detectors straight to the pixels of a monitor, the image would be highly noisy. To overcome this problem, and to increase significantly the dynamic range of the system, each of the detectors in the array can be modulated using a rotating modulator (or shutter). The shutter typically (but not necessarily) has equal duration open and closed fields, the output of each of the detectors of the array being interrogated at the end of each field. Pairs of outputs from the array corresponding to an open/closed action of the shutter are processed together to remove signals common to both the open and closed fields, leaving only the information due to the difference in radiation flux on the detectors between the open/closed fields. This technique of using a shutter is known as two point image difference processing (2-point IDP), as the detector outputs are processed in pairs. The use of a shutter is effective in eliminating offsets between detectors and enhancing the dynamic range.
A further problem arises when the choice of detector requires the use of a bias voltage applied across the detector. A well known example is the use of a dielectric bolometer instead of a pyroelectric device. In order for the bolometer to work, a bias voltage must be applied to each detector. The bias voltage causes a current to flow through the parasitic resistance associated with the detector, resulting in a steady ramped increase in the output voltage from the detector. If the voltage ramp is left unchecked it may eventually destroy the amplifier, and at the least would reduce the dynamic range of the device. Current may also flow onto the detector capacitance due to imperfections in the readout IC to which the detector is connected.
To prevent the leakage voltage saturating the amplifier, it is known to reset the output of the detector to ground (or some other reference voltage) by the use of a reset switch after each close/open or open/close cycle of the shutter i.e. after obtaining each output pair. A pair of outputs, obtained between resets is referred to hereinafter as a reset output pair. On each reset the output returns to a chosen voltage, but due to {square root over (kTC)} noise (Johnson noise), the level of the voltage to which the output of the detector is reset cannot accurately be determined. This noise, which causes errors between each reset output pair, would cause noise in the image if any form of IDP is performed which overlaps one or more of the resets. If a ramp due to leakage is present, it is indistinguishable from a radiometric signal, and this causes noise in the images.
The error due to the ramp can be overcome using a technique known as 3-point image difference processing (3-point IDP). In this technique, reset again occurs after each open/close output pair, but instead of processing pairs of outputs, overlapping output triplets are subtracted, each triplet sharing a closed field output with the adjacent triplet. The 3-point technique removes the ramp voltage, but cannot remove the kTC noise, as the reset occurs within each triplet of outputs, and so the correlation between the outputs present in two point IDP is lost.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an improved imager and method of image processing which can alleviate the problems associated with 2-point and 3-point IDP techniques.
In accordance with one aspect, the invention provides an imager comprising: one or more detector means comprising a detecting element adapted to produce an output current dependent upon the incident flux when biased by a bias voltage, shutter means adapted to open and close periodically to modulate the radiation incident upon the detecting element to produce a sequence of alternating open fields in which radiation is incident upon the detecting element and closed fields in which the radiation is at least partially blocked from reaching the detecting element, said detecting element being adapted to produce at least a first open output signal V
o1
indicative of the flux incident upon the detector during a first open field, a first closed output signal V
c1
indicative of the flux incident upon the detector during a first closed field, a second open output signal V
o2
indicative of the flux incident upon the detector during a second open field, and a second closed output signal V
c2
indicative of the output of the detecting element during a second closed field, said first output signals V
o1
and V
c1
corresponding to a first pair of fields comprising an open field and a closed field, and said second output signals V
o2
and V
c2
corresponding to a second pair comprising an open and a closed field, and reset means adapted to reset the output of the detecting element to a predetermined voltage, characterised in that the reset means is adapted to reset the output after the output signals of V
o1
, V
c1
, V
o2
and V
c2
have all been obtained, there being no reset of the output of the detecting element (3) between the output signals V
o1
, V
c1
, V
o2
and V
c2
, and by further comprising processing means adapted to produce a modified ramp value indicative of any ramp increase in the output signals over time such as due to bias leakage across the detector by processing pairs of closed field output signals V
c1
, V
c2
obtained between resets, the processing means being further adapted to process said first and second pairs of output signals together with said modified ramp value to produce a first and second processed image signal from the detecting element, the first processed image signal corresponding to the first pair of fields and the second processed image signal to the second pair of fields. Thus, in accordance with the invention, at least two images (produced from four output signals: two open field and two closed) are produced between each reset. From the two pairs of outputs, sufficient information is present for two images to be produced which are substantially independent of reset kTC noise, overcoming the disadvantages of the prior art 3-point technique, whilst substantially removing the effect of the ramp voltage which produces errors when using a standard 2-point IDP technique.
An amplifier means may be associated with each respective detecting element. There may be one amplif

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Image processing with modified ramp signal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Image processing with modified ramp signal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image processing with modified ramp signal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3154366

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.