Image processing system for estimating the energy transfer...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle subsystem or accessory control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S028000, C180S271000

Reexamination Certificate

active

06577936

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates in general to systems or methods used to determine whether the deployment of an airbag should be either fully or partially impeded. In particular, the present invention is an image processing system that receives a stream of two-dimensional images and applies iterative and probability-weighted processes to infer three-dimensional characteristics to those images, which in turn are used to determine the magnitude of the impact between an occupant and an airbag.
Conventional airbag deployment systems have contributed significantly to the safety of occupants in automobile crashes. However, there may be occasions when the full strength deployment of an airbag may not be desirable. The purpose of a airbag is to absorb the impact of an occupant. Airbag deployment strength in excess of this purpose may not be desirable.
Prior art systems generally take an all or nothing approach. Under such approaches, an airbag is either fully disabled or is deployed at full strength. A total disablement of the airbag precludes the occupant from receiving any benefits of an airbag, a generally useful safety device. A full strength deployment of an airbag may subject the occupant to undesirable force in a low speed crash. It would be desirable if an airbag deployment system could be deployed at various different strengths depending on the impact of the occupant and the airbag. It would be desirable if metrics such as kinetic energy, momentum, or other measurements utilizing the characteristics of mass and velocity were used to determine the magnitude of impact that an airbag needs to absorb from the impacting occupant. Current methods for determining the velocity and mass of an occupant suffer from significant limitations in the existing art.
Weight-based systems typically use weight sensors to determine the weight of an occupant. Weight-based systems are vulnerable to inaccurate measurements because of rapidly changing movements of an automobile in a state of crashing. Such movements can cause the weight in a seat to shift, making it difficult to measure weight accurately. Weight-based systems also lack the ability to track the speed at which the occupant approaches the airbag during a crash or during pre-crash braking. It would be desirable if the weight of an occupant were measured by more reliable means, such as by an analysis of the visual image of the occupant. Because the weight density for the otherwise diverse range of human occupants is relatively constant, it would be desirable to use the volume of an occupant to determine the mass of the occupant. It would also be desirable for the velocity of the occupant to be measured or calculated.
The current art also suffers from problems relating to the determination of velocity. Velocity-based systems often require highly expensive cameras. Timing is critical to any system used to modify airbag deployment. A standard video camera operates at a frequency between 50-100 hz and captures between 50 to 100 image frames per second of operation. Effective airbag determinations require more frequent updates, around approximately 200 updates per second (200 hz). Moreover, it would be desirable for an image processing system to predict the occupant's velocity at the time of impact with the airbag rather than merely identifying the occupant's velocity at the time that the image is captured. It would be desirable for such a system to track the acceleration and location of the occupant. It would also be desirable if accurate predictions could be generated at a faster rate than the camera speed so that a less expansive standard video camera could be used instead of a more expensive highly specialized high-speed camera.
Prior art systems are susceptible to “noise” because prior art systems focus solely on the most recent measurement or image, and ignore the series of measurements or images captured mere fractions of a second earlier. Measurement “noise” results from several factors, including the inherent imperfections of the segmentation process. The segmentation process is the process of extracting a segmented image (an image of just the occupant in isolation of the surrounding area) from the ambient image, which includes the image of the occupant as well as the surrounding area. It would be desirable for an image processing system to utilize an iterative process that would integrate the information contained in the most recent image into a comprehensive framework that includes prior predictions and indirectly, the prior images used to make those prior predictions. It would also be desirable for all predictions to be probability-weighted predictions. It would also be desirable for such weighted predictions to incorporate probabilities associated with predefined occupant states such as leaning left towards the driver, leaning right away from the driver, or sitting upright, and predefined occupant modes such as crash, stationary, or human.
Camera-based prior art systems also limited by the fact that they rely on two-dimensional images. The images captured by cameras, including video cameras, are inherently two dimensional images. However, some important characteristics such as volume are three dimensional. Thus, it would be highly beneficial if three-dimensional information could be inferred from a series of two-dimensional images taken by a single standard video camera. Moreover, it would be helpful if predefined occupant states were incorporated into the iterative process of deriving a three-dimensional information from a series of two-dimensional images.
SUMMARY OF THE INVENTION
This invention relates to an image processing system used to determine the strength at which an airbag should be deployed. In particular, this invention relates to an image processing system used to determine the impact of the occupant that the deploying airbag needs to absorb.
The invention determines the kinetic energy, momentum, or some other metric for measuring the impact of the occupant, from an image of the occupant. The impact measuring metric can then be used by the airbag deployment system to determine the desirable strength for airbag deployment. For example, the impact metric may indicate that an airbag should only be deployed at 100%, 75%, 50%, or even only 25% strength. The impact metric could also determine that an airbag should not deploy at all (a 0% strength deployment).
Through the use of sensor readings, the invention calculates one or more impact metrics. In a preferred embodiment of the invention, kinetic energy is the impact measurement. Kinetic energy is calculated using the mass and velocity of the occupant. Mass can be calculated using the volume of an occupant. Velocity of an occupant can be determined by comparing the change in occupant position.
In a preferred embodiment of the invention, two iterative and interactive multiple model Kalman filters can be used to incorporate a series of measurements relating to the most recently captured image of the occupant into an ongoing series of past predictions and image measurements relating to the position (including position, velocity, and acceleration) and shape (including area and volume) of the occupant.
Various aspects of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.


REFERENCES:
patent: 4179696 (1979-12-01), Quesinberry et al.
patent: 4625329 (1986-11-01), Ishikawa et al.
patent: 4985835 (1991-01-01), Sterler et al.
patent: 5051751 (1991-09-01), Gray
patent: 5074583 (1991-12-01), Fujita et al.
patent: 5229943 (1993-07-01), Eigler et al.
patent: 5256904 (1993-10-01), Tohbaru
patent: 5366241 (1994-11-01), Kithil
patent: 5398185 (1995-03-01), Omura
patent: 5413378 (1995-05-01), Steffens, Jr. et al.
patent: 5446661 (1995-08-01), Gioutsos et al.
patent: 5490069 (1996-02-01), Gioutsos et al.
patent: 5890085 (1999-03-01), Corrado et al.
patent: 5983147 (1999-11-01), Krumm
patent: 6005958 (1999-12-01), Farmer et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Image processing system for estimating the energy transfer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Image processing system for estimating the energy transfer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image processing system for estimating the energy transfer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3162600

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.