Image processing and analysis of individual nucleic acid...

Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – With means applying electromagnetic wave energy or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S051000, C422S051000, C422S091000, C422S129000, C435S006120, C536S023100

Reexamination Certificate

active

06294136

ABSTRACT:

1. FIELD OF THE INVENTION
This invention relates to methods and compositions for manipulating and characterizing individual polymer molecules, especially nucleic acid molecules, according to, for example, size and/or nucleotide sequence.
2. BACKGROUND OF THE INVENTION
The analysis of nucleic acid molecules at the genome level is an extremely complex endeavor which requires accurate, rapid characterization of large numbers of often very large nucleic acid molecules via high throughput DNA mapping and sequencing. The construction of physical maps, and ultimately of nucleotide sequences, for eukaryotic chromosomes currently remains laborious and difficult. This is due, in part, to the fact that current procedures for mapping and sequencing DNA were originally designed to analyze nucleic acid at the gene, rather than at the genome, level (Chumakov, I. et al., 1992, Nature 359:380; Maier, E. et al., 1992, Nat. Genet. 1:273).
Traditionally, the separation and molecular weight distribution of nucleic acid molecules has been accomplished, most commonly, via gel electrophoresis (see, for example, Freifelder, 1976, Physical Biochemistry, W. H. Freeman), which involves moving a population of molecules through an appropriate medium, such that the molecules are separated according to size. Such electrophoretic methods offer an acceptable level of size resolution, but, especially for purposes of high throughput mapping, suffer from a number of setbacks.
For example, such techniques require the preparation of DNA in bulk amounts. First, with respect to genome mapping, such preparative procedures may require sources such as genomic DNA or DNA from yeast artificial chromosomes (YACS; Burke, D. T. et al., 1987, Science 236:806; Barlow, et al., 1987, Trends in Genetics 3:167-177; Campbell et al., 1991, Proc. Natl. Acad. Sci. USA 88:5744). Obtaining quantities of DNA from these sources which is sufficient for detailed analyses, such as restriction mapping, is time consuming and often impractical. Second, because populations of molecules of like size migrate through the medium at the same rate, it is impossible to separate individual molecules from within a sample of particles by utilizing such a technique. Additionally, while it is possible to resolve a wide size range of DNA molecule populations gel electrophoresis techniques, optimal techniques can often require the use of several different gel matrix compositions and/or alternative electrophoresis procedures, depending upon the sizes of the molecules of interest. For example, the separation of large molecules of DNA may require such techniques as pulse field electrophoresis (see, e.g., U.S. Pat. No. 4,473,452). Further, standard gel electrophoresis techniques involve the separation of populations of molecules according to size, making it impossible to separate individual molecules within a polydisperse mixture. In summary, therefore, the accurate, rapid, practical, high throughput separation of individual DNA molecules, especially those of highly disparate sizes, which would often be required for genomic mapping purposes, is impossible via gel electrophoresis.
Techniques have been reported for the visualization of single nucleic acid molecules and complexes. Such techniques include such fluorescence microscopy-based techniques as fluorescence in situ hybridization (FISH; Manuelidis, L. et al., 1982, J. Cell. Biol. 95:619; Lawrence, C. A. et al., 1988, Cell 52:51; Lichter, P. et al., 1990, Science 247:64; Heng, H. H. Q. et al., 1992, Proc. Natl. Acad. Sci. USA 89:9509; van den Engh, G. et al., 1992, Science 257:1410) and those reported by, for example, Yanagida (Yanagida, M. et al., 1983, Cold Spring Harbor Symp. Quantit. Biol. 47:177; Matsumoto, S. et al., 1981, J. Mol. Biol. 132:501-516); tethering techniques, whereby one or both ends of a nucleic acid molecule are anchored to a surface (U.S. Pat. No. 5,079,169; U.S. Pat. No. 5,380,833; Perkins, T. T. et al., 1994, Science 264:819; Bensimon, A. et al., 1994, Science 265:2096); and scanning probe microscopy-based visualization techniques, including scanning tunneling microscopy and atomic force microscopy techniques (see, e.g., Karrasch, S. et al., 1993, Biophysical J. 65:2437-2446; Hansma, H. G. et al., 1993, Nucleic Acids Research 21:505-512; Bustamante, C. et al., 1992, Biochemistry 31:22-26; Lyubchenko, Y. L. et al., 1992, J. Biomol. Struct. and Dyn. 10:589-606; &mgr;llison, D. P. et al., 1992, Proc. Natl. Acad. Sci. USA 89:10129-10133; Zenhausern, F. et al., 1992, J. Struct. Biol. 108:69-73).
While single molecule techniques offer the potential advantage of an ordering capability which gel electrophoresis lacks, none of the current single molecule techniques can be used, on a practical level, as, for example, high resolution genomic mapping tools. The molecules described by Yanagida (Yanagida, M. et al., 1983, Cold Spring Harbor Symp. Quantit. Biol. 47:177; Matsumoto, S. et al., 1981, J. Mol. Biol. 132:501-516), for example, were visualized, primarily free in solution, in a manner which would make any practical mapping impossible. Further, while the FISH technique offers the advantage of using only a limited number of immobilized fragments, usually chromosomes, it is not possible to achieve the sizing resolution available with gel electrophoresis.
Single molecule tethering techniques, as listed above, generally involve individual nucleic acid molecules which have, first, been immobilized onto a surface via one or both of their ends, and, second, have been manipulated such that the molecules are stretched out. These techniques, however, are not suited to genome analysis. First, the steps involved are time consuming and can only be accomplished with a small number of molecules per procedure. Further, in general, the tethered molecules cannot be stored and used again.
A combination of the sizing capability of gel electrophoresis and the ordering capability of certain single molecule techniques such as, for example, FISH, would, therefore, be extremely useful for genomic analyses such as genomic mapping. Such analyses would be further aided by the ability to manipulate the single molecules being analyzed. Additionally, an ability to reuse the nucleic acid samples of interest would increase the efficiency and throughput capability of the analysis. Currently, however, there exists no single technology which embodies, in a practical manner, each of these elements.
Citation of documents herein is not intended as an admission that any of the documents cited herein is pertinent prior art, or an admission that the cited documents are considered material to the patentability of the claims of the present application. All statements as to the date or representations as to the contents of these documents are based on the information available to the applicant and does not constitute any admission as to the correctness of the dates or contents of these documents.
3. SUMMARY OF THE INVENTION
The present invention relates to methods and compositions for characterizing and manipulating individual nucleic acid molecules, including mammalian chromosome-sized individual nucleic acid molecules. The methods and compositions described herein can be utilized for the accurate, rapid, high throughput analysis of nucleic acid molecules at the genome level, and may, for example, include the construction of high resolution physical maps, referred to herein as “optical mapping”, and the detection of specific nucleotide sequences within a genome, referred to herein as “optical sequencing.”
Specifically, methods are described whereby single nucleic acid molecules, including mammalian chromosome-sized DNA molecules, are elongated and fixed in a rapid, controlled and reproducible manner which allows for the nucleic acid molecules to retain their biological function and, further, makes rapid analysis of the molecules possible. In one embodiment of such a procedure, the molecules are elongated in a flow of a molten or unpolymerized gel composition. The elongated molecules become fixed as the gel composition becomes hardened

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Image processing and analysis of individual nucleic acid... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Image processing and analysis of individual nucleic acid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image processing and analysis of individual nucleic acid... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2443726

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.