Computer graphics processing and selective visual display system – Computer graphics processing – Adjusting level of detail
Reexamination Certificate
1999-10-29
2004-09-28
Zimmerman, Mark (Department: 2671)
Computer graphics processing and selective visual display system
Computer graphics processing
Adjusting level of detail
C345S423000, C345S420000, C345S441000, C345S581000, C345S619000, C382S154000
Reexamination Certificate
active
06798411
ABSTRACT:
BACKGROUND
This invention relates to processing an image.
Pictures displayed on computer screens are made up of a very large number of closely packed dots known as pixels. Although a color or black-and-white image may include many different colors or shades of gray, each individual pixel displays only a single color or a single shade of gray. A computer accesses data to determine how to light up each pixel in an image. For example, the data may be a single number corresponding to a shade of gray, or a collection of numbers that instruct the computer to light a given pixel by mixing different amounts of red, green, and blue.
An image the size of a small computer monitor requires data for nearly half-a-million pixels. The large amount of data needed to describe each pixel in an image can consume a lot of space on a computer hard disk or take a long time to download over a network. Thus, it would be advantageous to develop a technique for reducing the amount of data needed to represent an image.
SUMMARY
A method of constructing a two-dimensional image including receiving information describing a two-dimensional N-gon mesh of vertices and constructing an image by coloring at least some of the N-gons based on the respective vertices of the N-gons.
REFERENCES:
patent: 4600919 (1986-07-01), Stern
patent: 5124914 (1992-06-01), Grangeat
patent: 5163126 (1992-11-01), Einkauf et al.
patent: 5731819 (1998-03-01), Gagne et al.
patent: 5929860 (1999-07-01), Hoppe
patent: 6057859 (2000-05-01), Handelman et al.
patent: 6191796 (2001-02-01), Tarr
patent: 6198486 (2001-03-01), Junkins et al.
patent: 6208347 (2001-03-01), Migdal et al.
patent: 6219070 (2001-04-01), Baker et al.
patent: 6262737 (2001-07-01), Li et al.
patent: 6262739 (2001-07-01), Migdal et al.
patent: 6337880 (2002-01-01), Cornog et al.
patent: 6388670 (2002-05-01), Naka et al.
Lewis “Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation” Centropolis, New Orleans, LA, 165-172.
Lasseter “Principles of Traditional Animation Applied to 3D Computer Animation” Pixar, San Rafael, California, 1987.
Thomas (Contributor) et al., “The Illusion of Life: Disney Animation” 47-51.
Hoppe, “Progressive Meshes” Microsoft Research, 99-108, http://www.research.microsft.com/research/graphics/hoppe/.
Popovic et al., “Progressive Simplicial Complexes” Microsoft Research, http://www.research.microsft.com/~hoppe/.
Hoppe “Efficient Implementation of progressive meshes” Coput. & Graphics vol. 22, No. 1, pp. 27-36, 1998.
Taubin et al., “Progressive Forest Spilt Compression” IBM T.J. Watson Research Center, Yorktown Heights, NY.
Cohen-Or et al., “Progressive Compression of Arbitrary Triangular Meshes” Computer Science Department, School of Mathematical Sciences, Tel Aviv, Israel.
Bajaj et al., “Progressive Compression and Transmission of Arbitrary Triangular Meshes” Department of Computer Sciences, University of Texas at Austin, Austin, TX.
Pajarola et al., “Compressed Progressive Meshes” Graphics, Visualization & Usability Center, College of Computing, Georgia Institute of Technology, Jan. 1999.
Alliez et al., “Progressive Compression for Lossless Transmission of Triangle Meshes” University of Southern California, Los Angeles, CA, 195-202.
Chow “Optimized Geometry Compression for Real-time Rendering” Massachusetts Institute of Technology, Proceedings Visualization 1997, Oct. 19-24, 1997, Phoenix, AZ, 347-354.
Markosian “Real-Time Nonphotorealistic Rendering” Brown University site of the NSF Science and Technology Center for Computer Graphics and Scientific Visualization, Providence, RI.
Elber Line Art Rendering via a Coverage of Isoperimetric Curves, IEEE Transactions on Visualization and Computer Graphics, vol. 1, Department of Computer Science, Technion, Israel Institute of Technology, Haifa, Israel, Sep. 1995.
Zeleznik et al., “SKETCH: An Interface for Sketching 3D Scenes” Brown University site of the NSF Science and Technology Center for Computer Graphics and Scientific Visualization, 1996.
Landsdown et al., “Expressive Rendering: A Review of Nonphotorealistic Techniques” IEEE Computer graphics and Applicatons, 29-37, 1995.
Raskar “Image Precision Silhouette Edges” University of North Carolina at Chapel Hill, Microsoft Research, 1999 Symposium on Interactive 3D Graphics Atlanta GA, 135-231, 1999.
Ma et al., “Extracting Feature Lines for 3D Unstructured Grids” Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA, IEEE, 1997.
Samet “Applications of spatial data structures: computer graphics, image processing, and GIS” University of Maryland, Addison-Wesley Publishing Company, 1060-1064, Reading, MA, Jun. 1990.
Dyn “A Butterfly Subdivision Scheme for Surface Interpolation with Tension Control” ACM Transactions on Graphics, vol. 9, No. 2, Apr. 1990.
Zorin “Interpolation Subdivision for Meshes With Arbitrary Topology” Department of Computer Science, California Institute of Technology, Pasadena, CA.
Lee “Navigating through Triangle Meshes Implemented as linear Quadtrees” Computer Science Department, Center for Automation Research, Institute for Advanced Computer Studies, University of Maryland College Park, MD, Apr. 1998.
Garland and Heckbert, Surface Simplification Using Quadric Error Metrics, Carnegie Mellon University.
Brucks Doug
Gorman Christopher L.
Nguyen Kimbinh T.
Zimmerman Mark
LandOfFree
Image processing does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Image processing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image processing will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3229231