Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2000-06-30
2003-03-11
Lateef, Marvin M. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C382S130000, C382S128000, C600S407000, C600S420000
Reexamination Certificate
active
06532380
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to coronary stent deployment, and in particular, to improved image guidance in coronary stent deployment.
2. Description of the Related Art
Increasing numbers of percutaneous transluminal coronary angioplasty (PTCA) are being performed in the United States. However, after PTCA, restenosis of the dilated segment occurs in a large percentage of patients and results from elastic recoil, neointimal formation and vascular contraction. PTCA followed by coronary stent placement provides a luminal scaffolding that virtually eliminates recoil and remodeling, and has been shown to significantly reduce the likelihood of restenosis. Currently, a vast majority of patients receive stents after angioplasty. In such procedures, cardiologists frequently deploy multiple adjacent stents in an artery to treat extended lesions or dissections. Since it is important to accurately align the stent ends, the cardiologist must adjust the position of the catheter head relative to a previously deployed stent. This requires that the first stent and the catheter head be visualized well enough that their relative stent positions can be accurately determined. This has not been possible in conventional coronary stent deployment techniques. As a result, a subsequently placed stent often cannot be placed precisely in relation to a previously placed stent, resulting in either an overlap or a gap between the two stents. Gaps between stents are significant because of the risk of residual dissections and restenosis. Overlap of stents increases the risk of restenosis due to increased vessel injury during deployment. In addition, studies with intravascular ultrasounds (IVUS) imaging of deployed stents revealed that a high percentage of stents may be insufficiently dilated despite an apparently angiographically successful deployment.
Deployed stents may be evaluated using intravascular ultrasounds (IVUS) imaging technique (S. Nakamura et al., “Intracoronary ultrasound observations during stent implantation,”
Circ.,
89, pp. 2026-2034, 1994). IVUS can accurately define the anatomy of the vessel and the stent within the vessel and is considered the gold standard for defining the results of stent implantation. But such assessment is time-consuming and expensive, and is not useful for visualizing previously deployed stents during the placement of multiple stents because the ultrasound probe cannot be inserted along with the delivery balloon and stent. Moreover, the IVUS device is invasive and may increase patient risk. IVUS may also physically compromise the integrity of the deployment of certain stent types. An alternative method for evaluating stent expansion is coronary pressure measurement (C. E. Hanekamp et al., “Comparison of quantitative coronary angiography, intravascular ultrasound, and coronary pressure measurement to assess optimum stent deployment,”
Circ.,
99(8), pp. 1015-1021, 1999). Other alternative methods use medical imaging devices to evaluate stent implantation. One reference describes a videodensitometric analysis, in which density profiles are constructed and compared with a theoretic profile of a normal artery (Y. Rozenman et al., “Quantitative videodensitometric technique for verification of optimal coronary stent implantation,”
International Journal of Medical Informatics,
51(1), pp. 51-57, 1998). However, such measurements are typically imprecise, as evidenced in the Rozenman study by the weak correlation of only R=0.74 between the videodensitometric and IVUS measurements of stenosis.
Most coronary stents are insufficiently radiopaque and are difficult to visualize in x-ray angiograms. Thus, in evaluation techniques using medical imaging devices, it is desirable to increase the visibility of the stents. For example, the stents may be coated with radiopaque material such as gold to increase their visibility. Experimental studies with gold plated stents show results with less thrombogeneity of the stents, but clinical comparison of stainless steel stents and gold-plated stents show significantly increased restenosis rates with gold plating (A. Schomig et al., “Randomized comparison of gold-plated steel stent with conventional steel stent: Results of the angiographic follow-up,”
Journal of the American College of Cardiology,
33(2), pp. 95A, 1999). Stents and guidewires having radiopaque markers attached thereto have been described in numerous references, examples including Frantzen, U.S. Pat. No. 5,741,327 (stent with markers) and Lorenzo, U.S. Pat. No. 5,836,892 (guidewires with markers). In techniques using medical imaging devices, images are taken to observe the stents, but these images are typically still images that show only the final positions of the stents or guidewires or balloons after placement.
Various image processing techniques have been proposed and are generally applicable to enhance angiographic images. For example, background subtraction attempts to separate the coronary arteries from patient background structures. But background structures can cause tracking errors or densitometric errors in correctly tracked arteries, since background structures are superposed on the vessel in the images. In the absence of motion, digital subtraction of a mask image taken before the contrast injection may be performed to remove the background structures, but this method has not been clinically successful because of involuntary patient motion. Motion-correction in current clinical DSA (digital subtraction angiography) systems is accomplished by a manually controlled translation of the mask image with respect to the contrast image. Unfortunately, since cardiac motion is more complex then simple translations, this technique will reduce artifacts in some parts of the image but reinforce or create artifacts in other parts of the image. Other methods to improve accuracy have been proposed, including a system for automatic re-masking during image acquisition, in which a new mask is selected whenever a similarity measure drops below a certain threshold, and a system using control points to determine the motion between the mask and live images. Manual selection of control points, however, can introduce errors if the points are not corresponding between the pre-processed and the mask images. Another technique, known as flexible mask subtraction, automatically tracks features from the mask to the live image. This method requires prior segmentation of the vessel from the surrounding background; as a result, regions beneath the vessel are not tracked directly but are interpolated. In general, a 2 D warped mask subtraction method involves subtraction of a previously acquired image that has been warped to correct for motion (E. H. W. Meijering et al., “Retrospective motion correction in digital subtraction angiography: A review,”
IEEE Trans. Med. Imag
., vol. 18, No. 1, pp. 2-21, 1999).
All of the above-mentioned background subtraction techniques suffer from several important limitations. First, they use a “mask” image of the background taken prior to stent deployment. The long delay between acquisition of the mask image and the image with stents present makes involuntary patient motion (such as breathing) a major source of degradation. Second, the subtraction of two images containing random noise results in an image with more noise than the original images. Third, the three-dimensional background motion is modeled as a single two dimensional motion. Only the portion of the background which moves according to the estimated two-dimensional motion mapping is correctly subtracted.
One method for reducing random noise in moving images is motion-compensated temporal averaging (e.g. Dubois E, Sabri S, “Noise Reduction in Image Sequences Using Motion-Compensated Temporal Filtering”,
IEEE Trans. Comm.
32(7):826-831, 1984). A feature such as a stent can be tracked and shifted to a common position in each image prior to temporal averaging. However, in projection images such as angiograms the presence of background structures can
Abbey Craig K.
Close Robert A.
Whiting James S.
Cedars Sinai Medical Center
Lateef Marvin M.
Qaderi Runa S.
LandOfFree
Image guidance for coronary stent deployment does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Image guidance for coronary stent deployment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image guidance for coronary stent deployment will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3003141