Incremental printing of symbolic information – Light or beam marking apparatus or processes
Reexamination Certificate
2002-02-25
2002-11-26
Tran, Huan (Department: 2861)
Incremental printing of symbolic information
Light or beam marking apparatus or processes
C347S172000
Reexamination Certificate
active
06486905
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an image-forming substrate coated with a layer of microcapsules filled with dye or ink, on which an image is formed by selectively breaking or squashing the micorcapsules in the layer of microcapsules. This invention also relates to an image-forming system using such an image-forming substrate.
2. Description of the Related Art
In a conventional type of image-forming substrate with a layer of microcapsules filled with dye or ink, a shell of each microcapsule is formed from a suitable photo-setting resin, and an optical image is recorded and formed as a latent image on the layer of microcapsules by exposing it to light rays in accordance with image-pixel signals. Then, the latent image is developed by exerting pressure on the layer of microcapsules. Namely, the microcapsules, which are not exposed to the light rays, are squashed and broken, whereby the dye or ink seeps out of the squashed and broken micorcapsules, and thus the latent image is visually developed by the seepage of the dye or ink.
Of course, each of the conventional image-forming substrates must be packed so as to be protected from being exposed to light, resulting in wastage of materials. Further, the image-forming substrates must be handled such that they are not subjected to excess pressure due to the softness of unexposed microcapsules, resulting in an undesired seepage of the dye or ink.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to provide an easy-to-handle image-forming substrate coated with a layer of microcapsules filled with dye or ink, for which it is unnecessary to protect against exposure to light.
Another object of the present invention is to provide an image-forming system using the above-mentioned image-forming substrate.
In accordance with a first aspect of the present invention, there is provided an image-forming substrate comprising a base member, and a layer of microcapsules, coated over the base member, that contains at least one type of microcapsule filled with a dye. The at least one type of microcapsule exhibits a pressure/temperature characteristic such that, when the at least one type of microcapsule is squashed and broken under a predetermined pressure at a predetermined temperature, the dye seeps from the squashed and broken microcapsules. The at least one type of microcapsule is coated with a radiation absorbent material absorbing electromagnetic radiation, having a specific wavelength, so as to be heated to the predetermined temperature by irradiation with a beam of radiation having the specific wavelength. Preferably, the radiation absorbent material comprises an infrared absorbent pigment exhibiting one of a transparent pigmentation and a milky white pigmentation.
According to the first aspect of the present invention, the layer of microcapsules may contain at least two types of microcapsules: a first type-of microcapsule filled with a first dye, and a second type of microcapsule filled with a second dye. In this case, each of the first and second types of microcapsules exhibits a pressure/temperature characteristic such that, when each of the first and second types of microcapsules is squashed and broken under a predetermined pressure at a predetermined temperature, the dye concerned seeps from the squashed and broken microcapsule. Also, the first type of microcapsule is coated with a first radiation absorbent material absorbing electromagnetic radiation having a first specific wavelength, so as to be heated to the first predetermined temperature by irradiation with a first beam of radiation having the first specific wavelength, and the second type of microcapsule is coated with a second radiation absorbent material absorbing electromagnetic radiation having a second specific wavelength, so as to be heated to the second predetermined temperature by irradiation with a second beam of radiation having the second specific wavelength. Preferably, the first radiation absorbent material comprises a first infrared absorbent pigment that exhibits one of a transparent pigmentation and a milky white pigmentation, and the second radiation absorbent material comprises a second infrared absorbent pigment that exhibits one of a transparent pigmentation and a milky white pigmentation.
Also, in accordance with the first aspect of the present invention, there is provided an image-forming system using the above-mentioned image-forming substrate, the layer of microcapsules of which contains the at least one type of microcapsule. In this case, an image-forming apparatus is used to form an image on the image-forming substrate, and includes a pressure application unit that exerts the predetermined pressure on the layer of microcapsules, and an irradiating unit that irradiates the layer of microcapsules with a beam of radiation having the specific wavelength, such that a portion of the layer of microcapsules, irradiated by the beam of radiation, are heated to the predetermined temperature.
In the image-forming system, the irradiating unit may comprise an optical scanning system that includes a radiation beam emitter that emits the beam of radiation, and an optical deflector that deflects the beam of radiation so as to scan the layer of microcapsules with the deflected beam of radiation. Preferably, the radiation beam emitter comprises an infrared source that emits an infrared beam as the beam of radiation.
In the image-forming system according to the first aspect of the present invention, the above-mentioned image-forming substrate, that includes the layer of microcapsules containing the first and second types of microcapsules, may be used. In this case, to form an image on the image-forming substrate, an image-forming apparatus is used, which includes a pressure application unit that exerts the predetermined pressure on the layer of microcapsules, and an irradiating unit that irradiates the layer of microcapsules with a first beam of radiation having the first specific wavelength, and a second beam of radiation having the second specific wavelength, such that a portion of the first and second types of microcapsules, irradiated by the first and second beams of radiation, are heated to the predetermined temperature.
The irradiating unit may comprise an optical scanning system that includes a first radiation beam emitter that emits the beam of radiation, a second radiation beam emitter that emits the second beam of radiation, and an optical deflector that deflects the respective first and second beams of radiation so as to scan the layer of microcapsules with the deflected first and second beams of radiation. Preferably, the first radiation beam emitter comprises a first infrared source that emits a first infrared beam as the first beam of radiation, and the second radiation beam emitter comprises a second infrared source that emits a second infrared beam as the second beam of radiation.
In accordance with a second aspect of the present invention, there is provided an image-forming substrate comprising a base member, and a layer of microcapsules, coated over the base member, that contains at least a first type of microcapsule filled with a first dye. The first type of microcapsule exhibits a first pressure/temperature characteristic such that, when the first type of microcapsule is squashed and broken under a first predetermined pressure at a first predetermined temperature, the first dye seeps from the squashed and broken microcapsule. The layer of microcapsules may further contains a second type of microcapsule filled with a second dye. The second type of microcapsule exhibits a second pressure/temperature characteristic such that, when the second type of microcapsule is squashed and broken under a second predetermined pressure at a second predetermined temperature, the second dye seeps from the squashed and broken microcapsule. In either case, the image-forming substrate further comprises a sheet of transparent film, covering the layer of microcapsules, that contains a radiation absorben
Furusawa Koichi
Orita Hiroshi
Saito Hiroyuki
Suzuki Katsuyoshi
Suzuki Minoru
Asahi Kogaku Kogyo Kabushiki Kaisha
Greenblum & Bernstein P.L.C.
Tran Huan
LandOfFree
Image-forming substrate and image-forming system using same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Image-forming substrate and image-forming system using same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image-forming substrate and image-forming system using same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2924259