Image forming apparatus with improved transfer efficiency

Electrophotography – Image formation – Photoconductive member

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C399S161000

Reexamination Certificate

active

06829454

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an image forming apparatus employing electrophotographic technology and particularly to an image forming apparatus which transfers a visible toner image formed on a latent image carrier to a recording medium electrostatially.
In a conventional image forming apparatus, a photoreceptor as a latent image carrier such as a photosensitive drum or a photosensitive belt is rotatably supported to the main body of the image forming apparatus. During the image forming operation, a latent image is formed onto a photosensitive layer of the photoreceptor and, after that, is developed with toner particles to form a visible image. Then, the visible image is transferred to a recording medium. For transferring the visible image, there is a known method of transferring the visible image to the recording medium by using a corona transfer, a transfer roller, a transfer drum, or a transfer belt (hereinafter, referred to as a transfer medium).
Such method is employed in monochrome image forming apparatuses. In addition, for a full-color image forming apparatus having a plurality of photoreceptors and developers, there is a known method transferring a plurality of color images on a transfer belt or transfer drums to a recording medium such as a paper in such a manner that the respective color images are sequentially superposed on each other, and then fixing these images. Moreover, an intermediate transferring type is also known in which color images are sequentially primary-transferred to an intermediate transfer medium and the primary-transferred images are secondary-transferred to a recording medium. Arranged on the photoreceptor and transfer medium used for any of the aforementioned methods is a cleaning mechanism for cleaning residual toner particles remaining on the photoreceptor after the development and the transfer to remove toner particles on the photoreceptor.
To improve the transfer efficiency, it is known in the art to set a peripheral velocity difference between the photoreceptor and the transfer medium. The peripheral velocity difference improves the property of stripping toner particles, thereby improving the transfer efficiency. In case of development using a single-component toner, the toner on the development roller is formed into a thin toner layer as uniformly as possible by a regulating blade in order to impart sufficient triboelectric charge to the toner. In this state, the toner is negatively charged by the surface of the development roller and the surface of the end of the regulating blade.
Especially for full-color image forming apparatuses, the modern trend is toward the use of toner of small particle size, uniform, and high circularity in order to improve the transfer efficiency. However, the use of such a toner reduces the fluidity of toner so that it is hard to cause triboelectric charging by the regulating blade. As a result, it is impossible to give sufficient charge so as to create a charge distribution in the toner. It is inevitable that even toner for negative charge includes positively charged toner particles.
In this case, in an image forming apparatus which forms images by negative charge reversal development, there is a problem that positively charged toner particles adhere to non-image portions of a latent image carrier (photoreceptor) so as to make “fog”, thus increasing the actual consumption of toner and also increasing the cleaning load of the photoreceptor. For cleaning residual toner particles after transfer from the photoreceptor, a large container for collecting and receiving the cleaning toner particles is necessary. There is also a problem that the fog increases the consumption of toner, leading to increase in running cost of consumable supplies. If a large amount of superplasticizing agent is added as an external additive to the toner in order to improve the fluidity of the toner for resolving the aforementioned problem, there may be another problem of reducing the fixing property.
For uniformly negatively charging a toner, there is a known method of regulating negatively chargeable toner particles on a toner carrier into a thin layer (the number of stories in the layer is 2 or less) by a toner layer thickness regulating member.
However, the regulation of toner particles into a thin layer reduces the rate of carrying toner particles, thus making the charge of the toner too high. Accordingly, the number of excessively negatively charged toner particles, i.e. over-charged toner particles, should be increased, thus unfortunately lowering the transfer efficiency from the organic photoreceptor to the transfer medium.
If charge is conducted under low temperature and low humidity condition or a color original image of low duty is successively printed on plural sheets of paper, the amount of charge of toner becomes too high, that is, toner particles are excessively charged. As a result, the reproducibility of half tone images should be lowered and/or the saturated printing optical density for printing solid images tends to be lowered.
The aforementioned method of setting a peripheral velocity difference between the photoreceptor and the transfer medium for improving the transfer efficiency of toner has a limit of improving the transfer efficiency under the low temperature and low humidity conditions or the high temperature and high humidity condition.
Another type of image forming apparatus will be described now. The image forming apparatus comprises a photoreceptor as a latent image carrier such as a photosensitive drum or a photosensitive belt which is rotatably supported to the main body of the image forming apparatus. During the image forming operation, a latent image is formed onto a photosensitive layer of the photoreceptor and, after that, is developed with toner particles to form a visible image. Then, the visible image is transferred to an intermediate transfer medium such as a transfer drum or a transfer belt (primary transfer) and then transferred again to a recording medium (secondary transfer).
Such method is generally employed in a full-color image forming apparatus in which color images are sequentially primary-transferred to an intermediate transfer medium and the primary-transferred images are secondary-transferred to a recording medium such as a paper at once. Arranged on the photoreceptor is a cleaning mechanism for residual toner particles remaining on the photoreceptor after the development and the transfer.
As toner used for such an image forming apparatus, dual-component toner composed of a developer and a magnetic carrier is generally known. Though the dual-component toner achieves relatively stable developing, the mixing ratio of the developer and the magnetic carrier is easily varied so that the maintenance for the mixing ratio is required. Accordingly, magnetic single-component toner has been developed. However the magnetic single-component toner has such a problem that clear color images are not obtained due to the opacity of magnetic material thereof. On the other hand, non-magnetic single-component toner has been developed as color toner. For obtaining high-quality record images with the non-magnetic single-component toner, there is a problem how to uniformly charge the toner particles
In order to solve the aforementioned problem of the non-magnetic single-component toner, Japanese Patent Unexamined publication H3-62072 discloses a toner layer thickness regulating member for a developing device. The toner layer thickness regulating member is made of a metal of which work function is low so as to have not only a function controlling the thickness of a toner layer but also a function actively causing triboelectric charging to the toner layer, thereby making charge uniform. This avoid local variation in the developing concentration due to insufficient charge, prevents deterioration of quality of record images, and equalize the thickness of toner layer.
However, the regulation of toner particles into a thin layer reduces the rate of carrying toner particles, thus making t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Image forming apparatus with improved transfer efficiency does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Image forming apparatus with improved transfer efficiency, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image forming apparatus with improved transfer efficiency will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3295075

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.