Image forming apparatus including image bearing member...

Electrophotography – Image formation – Development

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C399S053000, C399S101000, C399S223000

Reexamination Certificate

active

06643484

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an image forming apparatus such as a laser printer, a copying machine, or a facsimile machine and, more particularly to an image forming apparatus suitably designable as an inline-type image forming apparatus which has a plurality of electrostatic latent image bearing members, and in which images formed on the respective electrostatic latent image bearing members are successively transferred onto one intermediate transferring member or a transferring material in a superposition manner to form a multicolor image.
2. Related Art
Various color image forming apparatuses for forming a color image on a transferring material by using an electrophotographic recording system have been devised and some of them have been put to practice.
A representative example of such image forming apparatuses is a type of image forming apparatus which has one photosensitive body used as an electrostatic latent image bearing member, and a plurality of developing apparatuses respectively containing developers of a plurality of colors, and in which electrostatic latent images on the photosensitive body are successively developed by using the developing apparatuses. More specifically, rotary developing apparatuses integrally combined with developing apparatuses for development of four colors: yellow, magenta, cyan, and black are provided around one photosensitive body. Each of electrostatic latent images related to the colors and formed on the common photosensitive body is visualized as a toner image by the corresponding one of the developing apparatuses at a development position reached by the latent image with the rotation of the photosensitive body. Each time one toner image is obtained in this manner, it is transferred onto a transferring material, which is a recording member having a sheet shape such as a paper sheet. These steps are repeated to complete a multicolor image.
Another type of apparatus has also been devised in which toner images in different colors are selectively superposed on the surface of a photosensitive body to form a multicolor toner image on the photosensitive body surface, and the multicolor toner image Is thereafter transferred at a time onto the transferring material.
An inline-type of image forming apparatus different from those described above has also been proposed in which a plurality of photosensitive bodies are used as electrostatic latent image bearing members, and toner images in different colors are separately formed by developing apparatuses of each color respectively facing the photosensitive bodies and are successively transferred onto a transferring material while the transferring material is being conveyed to form a multicolor toner image. Each photosensitive body and other image forming means, including a developing apparatus and a charging device, are integrally combined into an image forming means with respect to each color (hereinafter referred to as “process station”). Process stations thus formed are successively placed along the direction of movement of a transferring material conveying member for conveying the transferring material. There is also a type of image forming apparatus having a similar construction but using a different transferring system such that toner images in different colors are not directly transferred onto a transferring material but successively superposed on an intermediate transferring member to form a multicolor image, which is transferred onto a transferring material at a time. In many cases, each process station is provided in the form of a process cartridge detachably attachable to the image forming apparatus.
Each of the typical types of color image forming apparatus using inline electrophotographic recording systems has both advantages and disadvantages. However, from the viewpoint of the recent development of speedup techniques with the change of market needs, inline systems are considered to be more advantageous than others. Also, intermediate member transfer systems devised as transferring means have the advantage of adaptability to various kinds of transferring material. For this reason, various products using these systems are being designed and put to practice.
However, attempts are being eagerly made to achieve improvements in certain specification items, e.g., reductions in size, weight and power consumption with respect to the above-described color image forming apparatuses. There is also a trend toward machine constructions using components simplified in various respects.
As a method of developing an electrostatic latent image, two-component development methods using a mixture of a toner and a carrier and one-component development methods using a magnetic toner alone are generally known. However, use of a carrier and a need for a so-called ATR mechanism for adjusting the mixing ratio of a toner and a carrier in two-component development methods conflict with requirements for reductions in size and weight.
Non-magnetic one-component development methods disclosed in Japanese Patent Application Laid-open Nos. 58-116559, 60-120368 and 63-271371 attract attention as development methods free from the above-described problem. Non-magnetic one-component development methods require no ATR mechanism, use a simplified arrangement in which charge is caused by friction between a developer, a developer carrying member, and a layer thickness regulating means such as a blade in contact with the developer carrying member, and enable formation of a sharp vivid color image without high-temperature dark transfer failure such as that caused in the case of using a magnetic one-component developer. Therefore, non-magnetic one-component development methods have been used with favorable effects.
In such non-magnetic one-component development methods, a developer carrying member is coated with a developer by a layer thickness regulating means such as a blade, and the developer is charged by friction against the blade or the surface of the developer carrying member. However, if the thickness of the coat is increased, developer particles not sufficiently charged exist. Such developer particles are liable to cause fog and to scatter. Therefore, there is a need to regulate the thickness of the developer coating layer to a sufficiently small value, and it is necessary to maintain the blade in pressure contact with the developer carrying member at a sufficiently high pressure. The force received by the developer in this state is larger than that received by a developer in a two-component development method or a one-component development method using a magnetic toner. A non-magnetic one-component development method is also known which uses an elastic roller in place of a blade as a means for regulating the developer layer thickness on a developing roller provided as a developer carrying member. The elastic roller contacts the developing roller at an upstream position in the direction of rotation of the developing roller. The elastic roller has the function of scraping off toner left on the developing roller instead of being fed for development, and newly supplying toner onto the developing roller.
In the arrangement using the blade or the elastic roller, toner on the developing roller rubs on the blade or the elastic roller. As the toner undergoes a larger number of repeated cycles of rubbing, an externally added material adsorbed to the toner surface is liberated or embedded in the toner resin. Such a toner degradation phenomenon becomes considerable if the time period during which toner on the developing roller rubs on the blade or the elastic layer, i.e., the rotating time of the developing layer, is increased. In particular, in the latter half of the life of toner, image degradations, such as fog, a reduction in density, and a defect due to transfer failure, occur.
In the case of an inline-type image forming apparatus which forms a multicolor image, the photosensitive drums and the developing rollers in all of process stations provided as image forming means

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Image forming apparatus including image bearing member... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Image forming apparatus including image bearing member..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image forming apparatus including image bearing member... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3167187

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.