Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device
Reexamination Certificate
1996-07-05
2001-04-24
Brier, Jeffery (Department: 2672)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Cursor mark position control device
C345S168000
Reexamination Certificate
active
06222525
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to structuring for sheet supported sensors and associated circuitry in hand-operated graphic image controllers, and particularly six degree of freedom computer image controllers which serve as interface input devices between the human hand(s) and graphic image displays such as a computer or television display, a head mount display or any display capable of being viewed or perceived as being viewed by a human.
2. Description of the Prior Art
Although there are many related physical-to-electrical hand-controlled interfacing devices for use as image controllers taught in the prior art, none are structured similarly to the present invention, and none offer all of the advantages provided by the present invention.
In the highly competitive, cost-sensitive consumer electronics marketplace, the retail sales price of an item is normally closely coupled to its manufacturing cost. It is generally agreed that the retail purchase price, or cost to the consumer, of any item influences a consumer's purchasing decision. Thus, cost of manufacture ultimately influences the desirability and value of an item to the public at large. Generally, physical-to-electrical converters embodied in hand operated electronic image controllers such as trackballs, mouse type and joystick type, increase in manufacturing cost as the number of degrees of freedom which can be interpreted between a hand operable input member and a reference member increase.
Typically in the prior art, a three degree of freedom joystick type input device costs more to manufacture than a two degree of freedom joystick, and a six degree of freedom (henceforth 6 DOF) joystick input device costs significantly more to manufacture compared to a three degree of freedom joystick. Likewise, a three or more degree of freedom mouse-type controller costs more to manufacture than a standard two degree of freedom mouse.
Manufacturing costs in such devices generally increase because, for at least one reason, an increasing number of sensors is necessary for the additional axes control, and the sensors in the prior art, particularly with 6 DOF controllers having a single input member, typically have been positioned in widely-spread three dimensional constellations within the controller, thus requiring multiple sensor mounts and mount locations and labor intensive, thus costly, hand wiring with individually insulated wires from the sensors to a normally centralized circuitry location remote from the sensors.
In the prior art there exist 6 DOF controllers of a type having a hand operable, single input member moveable in six degrees of freedom for axes control relative to a reference member of the controller. This type of controller having the 6 DOF operable input member outputs a signal(s) for each degree of freedom input, and it is this type of 6 DOF controller which is believed to be by far the most easily used for 3-D graphics control, and it is with this type of 6 DOF controller that the present invention is primarily concerned.
In the prior art, 6 DOF controllers of the type having a hand operable single input member utilize individual sensors and sensor units (bi-directional sensors) mounted and positioned in a widely-spread three dimensional constellation, due to the failure to provide structuring for cooperative interaction with the sensors, so that some, most or all of the sensors may to be brought into or to exist in a generally single area and preferably in a generally single plane or planes. The prior art fails to provide structuring, such as a carriage member, for allowing cooperative interaction with sensors. The prior art fails to demonstrate a carriage member which typically carries a sheet member connecting and supporting sensors.
Another failure in prior art 6 DOF controllers of the type having a hand operable single input member is the failure to use or anticipate use of inexpensive, flexible membrane sensor sheets, which are initially flat when manufactured, and which include sensors and conductive traces applied to the flat sheet structure. Such flat sheet membrane sensors could be advantageously used as a generally flat sensor support panel, or alternatively in bent or three dimensionally formed shapes in 6 DOF controller structures which utilize three dimensional constellation sensor mounting and appropriate structures for cooperative interaction with the sensors. The prior art in 6 DOF controllers of the type having a hand operable single input member, has failed to use and anticipate the use of, providing structures for cooperative interaction with sensors all in a single area which would allow use of a flat membrane sensor sheet or a flat printed circuit board supporting the sensors and sensor conductors. The prior art in 6 DOF controllers of the type having a hand operable single input member, has failed to use or anticipate use of flat sheet substratum as the foundation upon which to define or apply sensors such as by printing with conductive ink, or to mount the sensors such as by plug-in or soldered connection of the sensors, and preferably all of the required sensors for 6 DOF, and even further, the electrical conductors leading to and from the sensors in a printed or otherwise applied fixed position.
One prior art device which exemplifies many individual sensor units mounted in a widely-spread three dimensional constellation due to the sensor activators being located in many radically different elevations and planes, is shown in U.S. Pat. No. 4,555,960 issued Dec. 3, 1985 to M. King.
The King device is a 6 DOF controller which has sensors, which are load cells and rotary sensors such as potentiometers which are placed in various locations scattered essentially all over the controller. Such “scattered”, individual sensor and sensor unit mounting locations are required in the King controller due to the failure to provide the structures for cooperative interaction with the sensors to all be located or brought into a single area of the controller, and thus the sensors in the King controller are not arranged in a manner allowing conventional automated installation such as on a generally flat circuit board, or for printed circuit traces engaging or connecting the sensors to be utilized, such as on a circuit board.
King also fails to anticipate the use of flexible membrane sensor sheets which include sensors and printed conductive traces which can be manufactured inexpensively in a flat sheet form, and used in flat sheet form, or alternatively, bent into three dimensionally formed shapes to position the sensors in three dimensional constellations. Thus the sensors and associated electrical conductors (wires) in the King device are believed to be required to be hand installed, and the wires individually applied to the sensors and then brought into a generally central area during the manufacturing of the King controller. Such structuring as in the King device is costly to manufacture, which accounts for, at least in part, why 6 DOF controllers are very costly when compared to two degree of freedom controllers.
Another problem in prior art controllers such as the King device is reliability. In the King device, reliability is less than optimum due to the typical single input member 6 DOF prior art configuration of circuitry and sensors, because the hand wiring of sensors to remote circuitry is subject to malfunctions such as wires breaking, cold solder joints, and cross wiring due to error of the human assembler, etc.
Another problem in the circuitry and sensors as configured in typical prior art controllers, particularly 6 DOF controllers such as that of King, is serviceability, testing, and quality control during manufacturing, such as at the manufacturing plant wherein testing is applied before shipping, or after sales to the consumer such as with returns of defective controllers. The typical widely-spread prior art sensor mounting and hand applied wiring associated with the sensors renders trouble shooting and repair more costly.
Another prior ar
LandOfFree
Image controllers with sheet connected sensors does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Image controllers with sheet connected sensors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image controllers with sheet connected sensors will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2478151