Image compression

Image analysis – Image compression or coding

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06445823

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to electronic image methods and devices, and, more particularly, to digital communication and storage systems with compressed images.
Video communication (television, teleconferencing, Internet, and so forth) typically transmits a stream of video frames (pictures, images) along with audio over a transmission channel for real time viewing and listening or storage. However, transmission channels frequently add corrupting noise and have limited bandwidth. Consequently, digital video transmission with compression enjoys widespread use. In particular, various standards for compression of digital video have emerged and include H.261, MPEG-1, and MPEG-2, with more to follow, including in development H.263 and MPEG4. There are similar audio compression methods.
Tekalp, Digital Video Processing (Prentice Hall 1995), Clarke, Digital Compression of Still Images and Video (Academic Press 1995), and Schafer et al, Digital Video Coding Standards and Their Role in Video Communications, 83 Proc. IEEE 907 (1995), include summaries of various compression methods, including descriptions of the H.261, MPEG-1, and MPEG-2 standards plus the H.263 recommendations and indications of the desired functionalities of MPEG4. These references and all other references cited are hereby incorporated by reference.
H.261 compression uses interframe prediction to reduce temporal redundancy and discrete cosine transform (DCT) on a block level together with high spatial frequency cutoff to reduce spatial redundancy. H.261 is recommended for use with transmission rates in multiples of 64 Kbps (kilobits per second) to 2 Mbps (megabits per second).
The H.263 recommendation is analogous to H.261 but for bitrates of about 22 Kbps (twisted pair telephone wire compatible) and with motion estimation at half-pixel accuracy (which eliminates the need for loop filtering available in H.261) and overlapped motion compensation to obtain a denser motion field (set of motion vectors) at the expense of more computation and adaptive switching between motion compensation with 16 by 16 macroblock and 8 by 8 blocks.
MPEG-1 and MPEG-2 also use temporal prediction followed by two dimensional DCT transformation on a block level as H.261, but they make further use of various combinations of motion-compensated prediction, interpolation, and intraframe coding. MPEG-1 aims at video CDs and works well at rates about 1-1.5 Mbps for frames of about 360 pixels by 240 lines and 24-30 frames per second. MPEG-1 defines 1, P. and B frames with I frames intraframe, P frames coded using motion-compensation prediction from previous I or P frames, and B frames using motion-compensated bi-directional prediction/interpolation from adjacent I and P frames.
MPEG-2 aims at digital television (720 pixels by 480 lines) and uses bitrates up to about 10 Mbps with MPEG-1 type motion compensation with I, P. and B frames plus added scalability (a lower bitrate may be extracted to transmit a lower resolution image).
However, the foregoing MPEG compression methods result in a number of unacceptable artifacts such as blockiness and unnatural object motion when operated at very-low-bit-rates. Because these techniques use only the statistical dependencies in the signal at a block level and do not consider the semantic content of the video stream, artifacts are introduced at the block boundaries under very-low-bit-rates (high quantization factors). Usually these block boundaries do not correspond to physical boundaries of the moving objects and hence visually annoying artifacts result. Unnatural motion arises when the limited bandwidth forces the frame rate to fall below that required for smooth motion.
MPEG-4 is to apply to transmission bitrates of 10 Kbps to 1 Mbps and is to use a content-based coding approach with functionalities such as scalability, content-based manipulations, robustness in error prone environments, multimedia data access tools, improved coding efficiency, ability to encode both graphics and video, and improved random access. A video coding scheme is considered content scalable if the number and/or quality of simultaneous objects coded can be varied. Object scalability refers to controlling the number of simultaneous objects coded and quality scalability refers to controlling the spatial and/or temporal resolutions of the coded objects. Scalability is an important feature for video coding methods operating across transmission channels of limited bandwidth and also channels where the bandwidth is dynamic. For example, a content-scalable video coder has the ability to optimize the performance in the face of limited bandwidth by encoding and transmitting only the important objects in the scene at a high quality. It can then choose to either drop the remaining objects or code them at a much lower quality. When the bandwidth of the channel increases, the coder can then transmit additional bits to improve the quality of the poorly coded objects or restore the missing objects.
For encoding a single frame as in JPEG or an I frame in MPEG, Shapiro, Embedded Image Coding Using Zerotrees of Wavelet Coefficients, 41 IEEE Tr.Sig.Proc 3445 (1993) provides a wavelet hierarchical subband decomposition which groups wavelet coefficients at different scales and predicts zero coefficients across scales. This provides a quantization and fully embedded bitstream in the sense that the bitstream of a lower bitrate is embedded in the bitstream of higher bitrates.
Villasenor et al, Wavelet Filter Evaluation for Image Compression, 4 IEEE Tr.Image Proc. 1053 (1995) discusses the wavelet subband decomposition with various mother waveless.
However, more efficient coding at low bitrates remains a problem.
Hardware and software implementations of the JPEG, H.261, MPEG-1, and MPEG-2 compression and decoding exist. Further, programmable microprocessors or digital signal processors, such as the Ultrasparc or TMS320C6x, running appropriate software can handle most compression and decoding, and less powerful processors may handle lower bitrate compression and decompression.
SUMMARY OF THE INVENTION
The present invention provides video compression and decoding with embedded zerotree coding applied to a hierarchical decomposition (including wavelet) but with a special wild card symbol for significant coefficient replacement to use in successive scans; the wild card symbol is skipped on coding but evaluates as a zero during threshold comparisons.
This has the advantage of decreasing the bits required for coding with little compensation required in a decoder and can be used for JPEG or MPEG I frames or objects.
The present invention also provides video systems with applications for this coding, such as video telephony and fixed camera surveillance for security, including time-lapse surveillance, with digital storage in random access memories.


REFERENCES:
patent: 5315670 (1994-05-01), Shapiro
patent: 5321776 (1994-06-01), Shapiro
patent: 5412741 (1995-05-01), Shapiro
patent: 5563960 (1996-10-01), Shapiro
patent: 5602589 (1997-02-01), Vishwanath et al.
patent: 5748786 (1998-05-01), Zandi et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Image compression does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Image compression, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image compression will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2837800

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.