Computer graphics processing and selective visual display system – Display peripheral interface input device
Reexamination Certificate
1999-01-29
2002-07-23
Luu, Matthew (Department: 2672)
Computer graphics processing and selective visual display system
Display peripheral interface input device
C345S009000, C345S173000, C345S176000
Reexamination Certificate
active
06424332
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention pertains generally to devices and processes for selecting, designing, modeling, correlating and scaling of superimposed images. More particularly, the invention is an image comparison apparatus and method for use in medical and dental pre-operative planning and post-operative analysis, which allows a medical transparency, such as an x-ray film, to be superimposed with a computer-interfaced display and held securely therewith, and which further allows a surgeon to quickly and easily manipulate a displayed digital implant image on the computer display in superposition with the medical transparency, for correlating, comparing, scaling, designing and selection of medical implants.
2. Description of the Background Art
The modern day orthopedic surgeon, in preparing for a hip transplant or like surgical procedure, generally completes the pre-operative planning process using inefficient and inaccurate techniques for selection of prosthesis for surgical implanting. Typically, a medical x-ray film image and light panel, together with a protractor, scale and pen or pencil, are the only items used by surgeons in selecting a prosthesis. The scale of the x-ray is estimated by using inaccurate markers exposed on the x-ray film. The surgeon sketches a series of circles, lines and angles directly onto the x-ray film and then uses the sketched features to make an estimation of the necessary prosthesis. This estimation is also relied on for selection of the instruments required for the surgery and evaluating the general complexity of the surgical procedure. This estimation process is sometimes aided by the use of a series of transparent templates which represent possible implant choices. The above procedure relies heavily on the experience and intuition of the surgeon making the estimations and is time consuming and prone to inaccuracy, and can result in non-optimal implant selection and unfavorable surgical outcomes.
Various pre-operative planning systems have been devised to improve efficiency and accuracy in choosing medical and dental implant and other prostheses. Such systems typically utilize digitized medical scan data (CT, NMR, x-ray) upon which computer-run algorithms are used to generate a prosthesis model. The digital model thus generated can then be scaled and manipulated with the digital scan data. These systems, however, are generally difficult and expensive to implement, and have proven to be incompatible with current pre-operative planning environments. Particularly, the software associated with such pre-operative planning systems is complex and unfamiliar to the surgeons planning operations, and thus additional personnel must be present to operate the systems. Even when such systems are available, the time and complexity involved result in surgeons being disinclined to utilize the systems.
Also known are hand-held measurement devices which can be set on top of an underlying image, such as a map, so that a user can look through the display and see a cursor point or points on top of the underlying image and can make a measurement of the underlying image by moving a cursor. Such hand-held measuring devices have proved to be limited in scope and application. Additionally, a user must typically hold the device in position with one hand, leaving only one hand free to enter data, make notes, or carry out other operations. The use of such hand-held measuring devices has been generally limited to “tabletop” applications wherein gravity can provide limited assistance in holding the measuring device in place.
Accordingly, there is a need for an image comparison apparatus and method which can be used for preoperative planning for medical implant design and selection, which allows a transparency and a displayed complex image to be assembled and held in a stationary relationship when comparisons are being made, which is quick and accurate, which is easy to implement and use, which is compatible with standard medical and dental preoperative planning environments, and which can be used directly by surgeons without any training or requiring additional personnel. The present invention satisfies these needs, as well as others, and generally overcomes the deficiencies found in the background art.
SUMMARY OF THE INVENTION
The present invention is an image comparison apparatus and method for use in medical implant design, scaling and selection, which allows quick and accurate comparison of a displayed image with a superimposed image on a transparency, which allows sizing and selection of implantable prosthesis for individuals, and which is compatible with current preoperative procedures and can be used directly by surgeons.
In general terms, the invention comprises a display, means for illuminating the display which are coupled to the display, means for superimposing a transparent medium with the display and holding the transparent medium, display and illuminating means in a stationary relationship, and a computer, operatively coupled to the display and including user interface means for inputting instructions to the computer. Program means, associated with the computer, provide for generating, displaying and manipulating digital images on the display according to input from said user interface means. The digital image is displayed in superposition with an image or images present on the transparent medium. The transparent medium may be interposed between the display and illuminating means.
By way of example, and not of limitation, the display may comprise generally any type of digital display having a plurality of pixels thereon which are responsive to a computer or like data processing means. More preferably, the display used with the invention comprises a transparent flat panel display, preferably an active matrix or passive matrix transparent LCD screen having a plurality of liquid crystal-based pixels, positioned between transparent conductors, with each pixel separately addressable by the computer. The transparent medium preferably comprises a flat transparency in the form of a flat, resilient sheet such as a medical x-ray film, and has thereon an image such as the x-ray image of a human joint.
The means for superimposing a transparent medium with the display and holding the transparent medium, display and illuminating means in a stationary relationship is preferably provided by a transparent back panel, associated with the illuminating means, which is pivotally coupled to the LCD screen along one edge. The pivotally coupled transparent panel and LCD screen are structured and configured to receive a flat transparency, such as a medical x-ray film, in between the back panel and the LCD screen in a “clamshell” arrangement. The transparency is placed in between the LCD screen and transparent panel when the LCD screen and transparent panel are in an open position, and the transparency, LCD screen and illuminating means are assembled and held together in a fixed position or stationary relationship when the LCD screen and transparent panel are in a closed position. The illuminating means preferably comprises a back light associated with transparent panel that is hinged to the LCD screen. Generally, the touch screen interface of the invention is coupled to and superimposed on LCD screen, and the superimposing means of the invention thus also provides means for releasibly holding the touch screen, as well as the transparent medium, display and illuminating means, in a stationary relationship.
The computer used with the invention may be any standard data processing means or system, and preferably comprises a conventional personal computer having RAM, ROM and input/output or I/O means for information transfer. The preferred user interface means comprise a “touch screen” interface which is superimposed with, and preferably integral to, the hinged LCD screen. The user interface means also preferably comprises a touch pad, which may be associated with a second LCD screen and illuminated by the back light. The touch screen and touch pad us
Bozicevic Field & Francis LLP.
Hall Robert C.
Hunter Innovations, Inc.
Luu Matthew
Sajous Wesner
LandOfFree
Image comparison apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Image comparison apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image comparison apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2870691