Image analysis – Applications – Biomedical applications
Reexamination Certificate
2011-03-15
2011-03-15
Azarian, Seyed (Department: 2624)
Image analysis
Applications
Biomedical applications
C382S274000, C435S007250
Reexamination Certificate
active
07907769
ABSTRACT:
The invention provides methods for determining the differentiation state of cells. The methods include non-invasive, non-perturbing, automatable, and quantitative methods of analysis of cell colonies, individual cells, and/or cellular structures.
REFERENCES:
patent: 4150360 (1979-04-01), Kopp et al.
patent: 4905296 (1990-02-01), Nishihara
patent: 5526258 (1996-06-01), Bacus
patent: 5757953 (1998-05-01), Jang
patent: 5825909 (1998-10-01), Jang
patent: 5919464 (1999-07-01), Mann et al.
patent: 5989835 (1999-11-01), Dunlay et al.
patent: 6103479 (2000-08-01), Taylor
patent: 6128587 (2000-10-01), Sjolander
patent: 6167146 (2000-12-01), Rogers et al.
patent: 6385332 (2002-05-01), Zahalka et al.
patent: 6555802 (2003-04-01), Osipchuk et al.
patent: 6620591 (2003-09-01), Dunlay et al.
patent: 6658143 (2003-12-01), Hansen et al.
patent: 6727071 (2004-04-01), Dunlay et al.
patent: 6753965 (2004-06-01), Kumar et al.
patent: 6763128 (2004-07-01), Rogers et al.
patent: 6799066 (2004-09-01), Steines et al.
patent: 7085765 (2006-08-01), Zock et al.
patent: 7086350 (2006-08-01), Tecott et al.
patent: 7088845 (2006-08-01), Gu et al.
patent: 7151246 (2006-12-01), Fein et al.
patent: 7200495 (2007-04-01), Desai
patent: 7299088 (2007-11-01), Thakor et al.
patent: 7302096 (2007-11-01), Kim
patent: 7383237 (2008-06-01), Zhang et al.
patent: 2002/0025514 (2002-02-01), Jaworski et al.
patent: 2003/0077569 (2003-04-01), Clausell et al.
patent: 2003/0100024 (2003-05-01), Cassells et al.
patent: 2003/0149535 (2003-08-01), Sudo et al.
patent: 2003/0185450 (2003-10-01), Garakani et al.
patent: 2004/0018485 (2004-01-01), Ravkin et al.
patent: 2004/0063162 (2004-04-01), Dunlay et al.
patent: 2004/0072254 (2004-04-01), Callamaras et al.
patent: WO-94/11841 (1994-05-01), None
I Do et al., Wavelet-Based Texture Retriveal Using Generalized Gaussian Density and // Kullback-Leibler Distance. IEEE Transaction on Image Processin(:E vol. 11, No. 2. 146-158.
Aapoloa, U., et al., “Epigenetic Modifications Affet Dnmt3L expression,” Biochem. J., 380:705-713 (2004).
Abeyta, M. J., et al., “Unique gene expression signatures of independently-derived human embryonic stem cell lines,” Human Molecular Genetics, 13(6):601-608 (2004).
Adkins, M. W., et al., “The Histone Chaperone Asf1p Mediates Global Chromatin Disassembly in vivo,” The Journal of Biological Chemistry, 279(50):52069-74 (2004).
Agustin, R. S., et al., “Robust Failure Detection for Reentry Vehicle Attitude Control Systems,” Journal of Guidence, Control & Dynamics, 22(6):839-845 (1999).
Ahmad, K., et al., “Histone H3 variants specify modes of chromatin assembly,” Proc Natl Acad Sci USA, 99(Suppl 4):16477-84 (2002).
Armstrong, J. A. “Negotiating the nucleosome: factors that allow RNA polymerase II to elongate through chromatin,” Biochem. Cell Biol. 85:426-34 (2007).
Belotserkovskaya, R., et al., “FACT Facilitates Transcription-Dependent Nucleosome Alteration,” Science, 301:1090-1093 (Aug. 22, 2003).
Bernstein, B. E., et al., “A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells,” Cell, 125:315-326 (Apr. 21, 2006).
Bhattacharya, B., et al., “Gene Expression in Human Embryonic Stem Cell Lines: Unique Molecular Signature,” Blood, 103(8):2956-2964 (Apr. 15, 2004).
Bloom, K., “Centromere dynamics,” Current Opinion in Genetics & Development, 17:151-156 (2007).
Bovik et al., “Multichannel Texture Analysis Using Localized Spatial Filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):55-73 (1990).
Burges, C., “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and Knowledge Discovery, 2:121-167 (1998).
Cai, S., et al., “Tissue-specific nuclear architecture and gene expression regulated by SATB1,” Nat Genet, 34(1):42-51 (2003).
Chang, T., et al., “Texture Analysis and Classification with Tree-Structured Wavelet Transform,” IEEE Transactions on Image Processing, 2(4):429-441 (1993).
Cheutin, T., et al., “In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin,” Mol Cell Biol 24(8):3157-67 (2004).
Constantinescu, D., et al., “Lamin A/C Expression Is a Marker of Mouse and Human Embryonic Stem Cell Differentiation,” Stem Cells, 24:177-185 (2006).
Cremazy, F. G. E., et al., “Imaging in situ protein-DNA interactions in the cell nucleus using FRET-FLIM,” Exp Cell Res., 309:390-396 (2005).
Csiszar, I., “Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems,” The Annals of Statistics, 19(4):2032-2066 (1991).
Deckert, et al., “F-8 DFBW Sensor Failure Identification Using Analytic Redundancy,” IEEE Transactions on Automatic Control, 22(5)795-803.
Desai, M., et al., “Adaptive Robust Constrained Matched Filter and Subspace Detection,” Conference Record of the IEEE 36th Asilomar Conference on Signals, Systems and Computers, Monterey, Calif., 768-772 (2002).
Desai, M., et al., “Diffusion Tensor Model Based Smoothing,” IEEE 705-708 (2002).
Desai, M., et al., “Dual Redundant Sensor FDI Techniques Applied to the NASA F8C DFBW Aircraft,” Proc. AIAA Conference on Guidance and Control, 502-513(1976).
Desai, M., et al., “Functional MRI Activity Characterization Using Response Time Shift Estimates From Curve Evolution,” IEEE Transactions on Medical Imaging 21(11):1402-1412 (Nov. 2002).
Desai, M., et al., “Functional MRI Activity Characterization: An Estimation and Decision Theoretic Approach,” Medical Imaging Systems Technology, 5:251-295 (2005).
Desai, M., et al., “Model based Variational Smoothing and Segmentation for Diffusion Tensor Imaging in the Brain”, NeuroInformatics, 4(3):217-233 (2006).
Desai, M., et al., “Non Gaussian Robust Matched Subspace Detectors and Signal Design Analysis for a Class of Separable Subspaces,” Proceedings of the 3rd IEEE Sensor Array and Multichannel Signal Processing Workshop, Barcelona, Spain, 225-229 (Jul. 2004).
Desai, M., et al., “Non Gaussian Subspace Learning in the Presence of Interference,” 3rd IEEE Sensor Array and Multichannel Signal Processing Workshop, Barcelona, Spain (Jul. 2004).
Desai, M., et al., “Robust Constrained Non Gaussian FMRI Detection,” 3rd IEEE International Symposium on Biomedical Imaging, Arlington, Virginia, pp. 1076-1079 (2006).
Desai, M., et al., “Robust Gaussian and Non-Gaussian Matched Subspace Detection,” IEEE Transaction on Signal Processing. 51(12):3115-3127 (Dec. 2003).
Desai, M., et al., “Robust Subspace Learning and Detection in Laplacian Noise and Interference,” IEEE Transactions on Signal Processing, 55(7):3585-3595 (Jul. 2007).
Desai, M., et al., “Subspace Learning in Non-Gaussian Log-Concave Noise,” IEEE, 2364-2369 (2004).
Dietterich, T. G., et al., “Solving Multiclass Learning Problems via Error-Correcting Output Codes,” Journal of Artificial Intelligence Research, 2:263-286 (1995).
Do, M. N., et al., “Wavelet-Based Texture Retriveal Using Generalized Gaussian Density and Kullback-Leibler Distance,” IEEE Transaction on Image Processing, 11(2):146-158 (Feb. 2002).
Ekwall, K., “Epigenetic Control of Centromere Behavior,” Annu. Rev. Genet., 41:63-81 (2007).
Feuerbach, F., et al., “Nuclear architecture and spatial positioning help establish transcriptional states of telomeres in yeast,” Nature Cell Biology, 4:214-21 (Mar. 2002).
Furuyama, T., et al., “Chaperone-mediated assembly of centromeric chromatin in vitro,” Proc Natl Acad Sci USA, 103(16):6172-6177 (Apr. 18, 2006).
Galloway, M., “Texture Analysis Using Gray Level Run Lengths,” Computer Graphics and Image Processing, vol. 4, Issue 2, pp. 172-179 (1975).
Gerlich, D., et al., “Global ch
Desai Mukund
Erb Teresa M.
Lowry Nathan
Mangoubi Rami
Sammak Paul J.
Azarian Seyed
Ropes & Gray LLP
The Charles Stark Draper Laboratory Inc.
University of Pittsburgh - Of the Commonwealth System of Higher
LandOfFree
Image-based methods for measuring global nuclear patterns as... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Image-based methods for measuring global nuclear patterns as..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image-based methods for measuring global nuclear patterns as... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2623199