Radiant energy – Source with recording detector – Using a stimulable phosphor
Reexamination Certificate
2001-11-21
2004-07-13
Gagliardi, Albert (Department: 2878)
Radiant energy
Source with recording detector
Using a stimulable phosphor
C250S582000, C715S252000
Reexamination Certificate
active
06762429
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an image and information processor, and more specifically to an image and information processor for images and information for medical treatment purposes, which is a standalone (i.e., independent) device or which is used by being connected to a network.
2. Description of the Related Art
Currently, a radiation image information recording and reproducing system is being used which utilizes a stimulable phosphor, and according to this system, when an irradiation of radiation (i.e., X-rays, &agr;-rays, &bgr;-rays, &ggr;-rays, electronic beams, ultra-violet rays or the like) is received, a portion of the radiation energy of this irradiation is stored, and then when an irradiation of laser light or visible light or other such excitation light is received, the stimulable phosphor shows a photostimulated luminescence as a result of the stored energy.
Examples of this type of radiation image information recording and reproducing system include, for example, systems such as those proposed in JP 63-253348 A, JP 01-227139 A, JP 04-123173 A and JP 04-155581 A by the present Assignee. In such a system, an image of a patient is captured at a hospital, for example, by means of an X-ray image capturing device or the like, radiation image information pertaining to this patient, for example, is stored and recorded on a sheet of a stimulable phosphor, and this sheet is scanned by means of a laser or other such excitation light to generate photostimulated luminescence light; and the system is provided with a radiation image reading device for photoelectronically reading the photostimulated luminescence light which has been obtained in this way and thereby obtaining image data; an identification information registration device for registering the patient's identification information; and an image recording device for recording a radiation image onto a photographic photo-sensitive material or other such recording material, for example, as a visible image based on the obtained image data, in connection with the registered patient's identification information and the like.
In this type of conventional radiation image information processing system, before the image of the patient is captured or at the time when the image is captured, identification (i.e., ID) information is registered in the identification information registration device (i.e., ID terminal) which is positioned proximate to the radiation image capturing device and the like; this identification information being comprised of the patient's first and last name, sex, date of birth, identification (i.e., ID) number and other such information pertaining to the patient, along with the year, month and date on which the image was captured, the region that was captured, the method by which the image was captured, a bar code information from the stimulable phosphor sheet onto which the image was captured, and other such information relating to the capturing of the image.
On the other hand, information such as the following is sent from the ID terminal to the radiation image reading device: the registered identification information and conditions for the processing of the radiation image which has been read by the radiation image reading device; an output destination for the processed radiation image (i.e., a destination to which the image data is to be distributed), meaning information regarding which image recording device the image data should be outputted to; the output conditions for outputting the processed radiation image from the image recording device; and also a distribution destination for the outputted radiation image, such as an internist's office or surgeon's office or other such particular medical specialist's office in a hospital, for example.
Also, the radiation image reading device reads the bar code on the back surface of the stimulable phosphor sheet and establishes a correspondence (relationship) with the patient's ID information which has been obtained from the ID terminal, and also reads from the stimulable phosphor sheet the radiation image information which was captured onto this stimulable phosphor sheet, performs the image processing and the like in accordance with the conditions which have been received and sends to the image recording device the processed radiation image which has thus been produced, outputting this image together with the output conditions. At the image recording device, the processed radiation image is outputted, according to the obtained output conditions, as a transparent film image equivalent to an X-ray image or reflective paper image or other such hard copy image. The outputted radiation image is distributed by means of a well known means to the distribution destination which was obtained from the ID terminal.
In the conventional radiation image information processing system disclosed in the above-mentioned publications, the radiation image reading device can read vast amounts of the stimulable phosphor sheet, and due to reduced costs, it is possible to use a plurality of radiation image reading devices; accordingly, not only is it possible to connect one of or a plurality of the radiation image reading devices to a plurality of ID terminals and position the ID terminals close to the radiation image capturing device, but also it is possible to place the ID terminals close to the reception desk or other part of the hospital or the various specialists' offices, for example, thereby improving the ease and efficiency of the inputting of the patient information and the cross-checking of the patient information against the stimulable phosphor sheet at the capturing device. Alternatively, it becomes possible to perform the reading of the stimulable phosphor sheet by any radiation image reading device, regardless of which ID terminal the stimulable phosphor sheet was registered in, thus enabling the efficient running of a plurality of radiation image reading devices
Further, in the conventional radiation image information processing system disclosed in the above-mentioned publications, it is possible to connect a plurality of ID terminals, which are connected to one or more radiation image reading devices, or a plurality of ID terminals which are each individually connected to one of a plurality of radiation image reading devices to a single managing device (such as a host computer or manager ID terminal), or connect a plurality of radiation image reading devices to a single ID information input storage unit, and thus realize integrated management of the ID information, and also it becomes possible to perform integrated management of the running status of the radiation image reading device and the image recording device, and the usage status of the stimulable phosphor sheet, and thus manage the efficient running of the radiation image reading device and the efficient use and longevity of the stimulable phosphor sheet and the like. At this time, one or more image recording device may be connected to the one or more radiation image reading devices, and thus the efficient running of the image recording device is enabled.
However, in recent years, even in this type of conventional radiation image information processing system, what is used for the image output device, which outputs the radiation image as a visible image, is not only an image recording device for recording onto the recording material, but also an image display device for performing a monitor-type display on an LCD, CRT or the like for review of the radiation image. Also, this type of image display device is now physically set up as in image review device in each specialists' office in the hospital or such, and is also set up for each physician, image inspection engineer or other type person who is to inspect the image.
Therefore, not only is the outputted hard copy image distributed to the particular specialist's office in the hospital or other such distribution destination, but also, in order to make the d
Fuji Photo Film Co. , Ltd.
Gagliardi Albert
LandOfFree
Image and information processor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Image and information processor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image and information processor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3201030