Illuminated safety and work glasses

Optics: eye examining – vision testing and correcting – Spectacles and eyeglasses – Combined

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06824265

ABSTRACT:

CROSS-REFERENCE TO RELATED INVENTIONS
Not Applicable
FEDERALLY SPONSORED RESEARCH
Not Applicable
SEQUENCE LISTING OR PROGRAM
Not Applicable
BACKGROUND OF THE INVENTION—FIELD OF INVENTION
This invention relates to head worn illuminating devices, more specifically to illuminating spectacles utilizing light emitting diodes as the light source.
BACKGROUND OF THE INVENTION
Presently existing electrically powered head worn illuminating devices are produced mainly in the form of headlamps. Less common is a design that successfully combines glasses and illumination as a single device.
Examples of light emitting diode-equipped glasses have been envisioned and manufactured but most designs are novelty devices and are not meant for illumination. U.S. Pat. No. 4,283,127 to Rosenwinkel et al (1981) discloses a pair of novelty flashing spectacles utilizing diodes mounted in the lens area. Another example of led-equipped glasses is U.S. Pat. No. 4,822,160 to Tsai (1989 containing a plurality of leds from left to right on the upper portion of the glasses. These glasses are designed to attract attention to the wearer by flashing and are not meant to provide area illumination.
Another type of head worn illuminating device comprises a dive mask with a plurality of lamps mounted along the top of the mask. U.S. Pat. No. 5,224,772 to Fustos (1993) discloses this design where a plurality of lamps on the top of the mask are flush mounted in an enclosure. A drawback to this design is shadowing of a portion of illuminated areas. This is caused by placement of the lights above the plane of the wearer's eyes. Obviously, the intended use is specific to underwater illumination, not general use.
Single and multiple point light source designs utilizing a filament bulb or bulbs are present. Drawbacks to this type of design can include high power consumption, poor color comprehension, and need for a reflector to focus the light into a useful beam. High power consumption is a disadvantage when the power source is limited as is the case when using batteries. The low efficiency of this type of system can result in short operational duration and can become costly due to need for frequent battery replacement. The light produced by these filament type bulbs is not a balanced white light and may not provide accurate color comprehension. Reflector assemblies and bulb sockets appear to be common components of designs employing filament bulbs and can add to the complexity, weight, and expense of designs of this type. U.S. Pat. No. 4,959,760 to Wu (1990) discloses use of an assembly fitted with a filament type bulb and made to attach to one earpiece of a pair of glasses. This design has the drawback of the light source emanating from only one point, the device mounted to the left only or right only extent of the glasses and can cause shadowing of viewed objects. The type of illuminating device used is a filament type bulb. This system shares the drawbacks of a filament bulb system. Additionally, modification of glasses is necessary in order to mount the assembly.
A design combining light emitting diodes and goggles is shown in U.S. Patent Application Publication US2001/0021108A1 for Shimada et al. (2001).
FIGS. 9 and 10
of the application publication depict a set of goggles with 2 light emitting diode panels located behind the lens, each mounted in the left and right extent of the goggle frame. In use, the panels will be in very close proximity to the wearer's face. This creates an opportunity for injury to the wearer if the goggles are struck or otherwise forced towards the wearer's face. The rigidity of circuit boards mounted in or on the goggles may alter the flexibility built into the goggles. Under extreme impact, the circuit board may shatter and cause considerable injury to the wearer. Another shortfall in this design is risk caused from using uncovered and electrically unshielded circuit boards. If used in close proximity to ignitable vapors, a spark resulting from a shorted connection on the board could initiate a fire or explosion. Additionally, the led panels are quite large and may substantially interfere with or reduce forward vision and the apparent lack of light shielding around the led panels may allow a large amount of the emitted light to reflect back into the wearer's eyes. In actual use, this design could reduce the quality of vision, when compared to using unlighted goggles.
A design combining glasses and lamps as a single device is shown in RE'PUBLIQUE FRANCAISE patent 2 601 149 to Jean Jacques Koubi (1985). This design uses two filament type lamps, 1 located at each the left and right extent of the frames. For reasonably effective duration of operation, the low efficiency of the filament lamps may require a substantial power supply. Furthermore, the electrical conducting assembly (the subject of the patent) is exposed at the point where the frames meet the lens assembly and this type of design can create an exposed electrical arc, a definite hazard when used in areas containing ignitable vapors.
Briefly mentioned above is a difficulty in designing head worn lighting devices that becomes apparent when the device is used for certain tasks. This difficulty, a problem for designers of lighted headwear, is the shading of some areas the illuminating device is supposed to illuminate. Any single-point light source can cause shading if the light source is on a different plane than the viewer's eyes. Only true ambient light eliminates shading. However, it is possible to overcome this problem when designing head worn lighting by placing a plurality of forward emanating light sources to the left and right, and above and below the eyes of the viewer. This positioning provides light on all planes and sides of the object viewed and mimics, for the viewer, ambient light.
“Another design combining glasses and lamps is disclosed by Jordan in U.S. Pat. Des. No. 428,431 (2000). This design shows an eyeglass frame with four lamps mounted in the top portion of the frame. The electrical wiring is permanently embedded within the frame and it appears that the lamps are also permanently embedded within the frame. As discussed above, a shortcoming of this design is the potential of shading caused by placement of the lamps in a plane above the user's eyes. Also, from the apparent small size of the battery compartment, it appears that the glasses are not meant for long-duration operation. Due to the apparent small battery size, frequent battery replacement could become a costly drawback in actual use of this design.”
Designs of head worn lighting devices will always cause some shadowing of the viewed object if lighting from a single point, or even multiple points if the light sources do not ‘surround’ the eyes of the viewer (above and below, and to the left and right). The closer the object being viewed is to the eyes, the more pronounced the shadowing will be. For certain types of close viewing, tasks such as stitching wounds, small parts fabrication, measurement and layout of small parts, watch and jewelry repair, sewing, etc. . . . can be more difficult to perform and reduce the accuracy of the task being done when this shading is present.
“FIGS. 2-6 of U.S. patent application publications US2003/0086053 and US2003/0206269 of Waters (2003) disclose another design where two compartments, one attached beyond the left extent, and one attached beyond the right extent of the glasses; each compartment having a diode mounted approximately at the center (elevation) of the glasses. Disadvantages of this design include: the ‘plane’ of illumination does not surround the users eyes and is in balance only when user's pupils are aligned with the diodes in reference to an object being viewed. Normal eye movement causing the pupils to move below or above this alignment, or ‘plane’, create a shading potential. Insignificant when viewing flat surfaces; but becoming a potentially significant negative factor when viewing three-dimensional surfaces such as found in the above-mentioned examples. The com

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Illuminated safety and work glasses does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Illuminated safety and work glasses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Illuminated safety and work glasses will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3324603

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.