Ignition device, controller and ignition unit for an...

Internal-combustion engines – High tension ignition system – Current or voltage sensing in coil primary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06799564

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The invention relates to an ignition device for an internal combustion engine, a controller for said ignition device, and an ignition unit.
BACKGROUND OF THE INVENTION
With internal combustion engines without automatic ignition, ignition of the fuel mixture in the combustion areas of the internal combustion engine generally takes place by means of a spark plug, across which an ignition coil discharges.
It is important here that before the sparking process a sufficiently large quantity of energy is stored in the ignition coil, in order to be able to trigger an ignition spark, which requires a correspondingly large electric current through the ignition coil.
On the other hand the level of electrical energy stored in the ignition coil should also not be too high, as this results in an increased thermal load on the ignition coil and ignition output stage and also increases wear and tear on the spark plug.
Before every ignition process therefore the electrical energy stored in the ignition coil should be within a predefined band, in order to enable an ignition spark to be triggered reliably with a minimal thermal load on the ignition coil and ignition output stage and the lowest possible level of wear and tear on the spark plug.
Ignition output stages to activate the spark plug are known, which are integrated in the electronic engine control unit (ECU). This has the advantage that the electronic engine control unit can detect the current through the ignition coil in order to prevent a further increase in current once the required level of energy is reached in the ignition coil.
It can however be desirable to configure the ignition output stage as a separate component from the electronic engine control unit, whereby the electronic engine control unit transmits the ignition signals to the ignition output stage across a control line.
A disadvantage of such a separate configuration of the electronic engine control unit and the ignition output stage is the fact that the electronic engine control unit is not able to check the electrical energy stored in the ignition coil. Therefore when current is being fed to the ignition coil before the ignition processes, significant safety reserves have to be provided, so that the level of electrical energy stored in the ignition coil is usually higher than necessary, resulting in an increased thermal load on the ignition coil and ignition output stage and also increasing wear and tear on the spark plug.
It is known from RODENHEBER, R: Neue Treibergeneration für Kfz-Zündsysteme (New driver generation for vehicle ignition systems), Elektronik 19/1991, that the ignition coil current can be transmitted from the ignition output stage across a bi-directional control line to the controller, whereby digital gauges are used on the control line.
It is also known from DE 38 00 932 A1 that a controllable current source can be used to feed the ignition coil current back from the ignition output stage to the controller, said controllable current source inputting a predefined current on the control line based on the ignition coil current.
A similar bi-directional data transmission for a vehicle data bus is also known from U.S. Pat. No. 4,736,367.
A disadvantage of the known arrangement is however the fact that only the ignition coil current is transmitted.
SUMMARY OF THE INVENTION
The object of the invention is therefore to make it possible with a separate arrangement of ignition output stage and electronic engine control unit for a plurality of different items of information to be fed back from the ignition output stage to the engine control unit across a single bi-directional control line.
The object can be achieved by an ignition unit with an ignition device and a controller for an internal combustion engine, the ignition device comprising an output for electrical activation of an ignition element for a combustion area of the internal combustion engine, an electrical energy storage device for storing the electrical energy required to activate the ignition element, a control input to record a control signal controlling the charging process for the energy storage device and/or the ignition process from the controller, wherein the control input enables bi-directional data transmission with the controller, in order to give the controller feedback about the charging process for the energy storage device and/or the ignition process for the ignition element, while the control input is connected to a controllable current source in order to input a current signal at the control input to feed back to the controller, wherein the energy storage device is connected to a current metering unit, which records the charging current of the energy storage device, and a controllable sink connected to the control input, in order to input a current signal at the control input to feed back to the controller, whereby the current metering unit is connected to the controllable current sink or to the controllable current source, and the energy storage device is connected to a voltage metering unit, which monitors the ignition voltage, whereby the output side of the voltage metering unit is connected to the controllable current source or the controllable current sink, in order to input the current signal at the control input based on the ignition voltage, the controller comprising a control output for emitting a control signal controlling the charging process for the energy storage device located in the ignition device and/or the ignition process for an ignition element, a driver circuit connected to the control output to generate the control signal, whereby the control output enables bi-directional data transmission, in order to be able to receive feedback from the ignition device about the charging process for the energy storage device and/or the ignition process, a first current metering unit connected to the control output, in order to detect a current signal input by the ignition device, and a second current metering unit connected to the control output, wherein the first current metering unit detects a current signal input by a controllable current sink in the ignition device, while the second current metering unit detects a current signal input by a controllable current source in the ignition device, and the two current metering units are each connected across a controllable switching element to the control output, wherein the controller is connected to the ignition device across a bi-directional control and diagnosis line.
The object can be achieved by an ignition device for an internal combustion engine, comprising an output for electrical activation of an ignition element for a combustion area of the internal combustion engine, an electrical energy storage device for storing the electrical energy required to activate the ignition element, a control input to record a control signal controlling the charging process for the energy storage device and/or the ignition process from a controller, wherein the control input enables bi-directional data transmission with the controller, in order to give the controller feedback about the charging process for the energy storage device and/or the ignition process for the ignition element, while the control input is connected to a controllable current source in order to input a current signal at the control input to feed back to the controller, wherein the energy storage device is connected to a current metering unit, which records the charging current of the energy storage device, and a controllable sink connected to the control input, in order to input a current signal at the control input to feed back to the controller, whereby the current metering unit is connected to the controllable current sink or to the controllable current source, and the energy storage device is connected to a voltage metering unit, which monitors the ignition voltage, whereby the output side of the voltage metering unit is connected to the controllable current source or the controllable current sink, in order to input the current sign

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ignition device, controller and ignition unit for an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ignition device, controller and ignition unit for an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ignition device, controller and ignition unit for an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3313827

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.