Ignition apparatus having feature for shielding the HV terminal

Inductor devices – With outer casing or housing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C336S107000, C336S192000, C123S634000

Reexamination Certificate

active

06724289

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates generally to an ignition apparatus for developing a spark firing voltage that is applied to one or more spark plugs of an internal combustion engine.
2. Discussion of the Background Art
Ignition coils are known for use in connection with an internal combustion engine such as an automobile engine, and which include a primary winding, a secondary winding, and a magnetic circuit. The magnetic circuit conventionally may comprise a cylindrical-shaped, central core extending along an axis, located radially inwardly of the primary and secondary windings and magnetically coupled thereto. The components are contained in a case formed of electrical insulating material, with an outer core or shield located outside of the case. One end of the secondary winding is conventionally configured to produce a relatively high voltage when a primary current through the primary winding is interrupted. In a common configuration, insulating resin or the like is introduced into the gap between the secondary winding and the case for insulating purposes. The high voltage end is coupled to a spark plug, as known, that is arranged to generate a discharge spark responsive to the high voltage. It is further known to provide relatively slender ignition coil configuration that is adapted for mounting directly above the spark plug—commonly referred to as a “pencil” coil.
One problem in the design of ignition coils, particularly pencil coils, involves a relatively high electrical field concentration at a location where the high voltage end of the secondary winding is terminated to a high voltage (HV) secondary terminal associated to a secondary winding spool. The relatively high electrical field concentration may be magnified by any burr, sharp edge, or solder icicle that may be formed on the terminal.
In addition, to connect the high voltage end of the secondary winding to the HV secondary terminal, the wire end must leave a so-called winding bay (i.e., the winding surface on the spool between upper and lower flanges). Outside the winding bay, the secondary winding wire creates a high density electric field therearound. As a consequence, the increased electrical field concentration, over time, may result in an electrical tree or dendrite forming off of the secondary winding, which may propagate through the insulating resin. After the dendrite grows far enough, for example toward ground potential (i.e., through the resin and case to the shield), the high voltage secondary winding will short to ground and the ignition coil will fail.
U.S. Pat. No. 6,208,231 issued to Oosuka et al. entitled “STICK-TYPE IGNITION COIL HAVING IMPROVED STRUCTURE AGAINST CRACK OR DIELECTRIC DISCHARGE,” discloses an ignition coil wherein a high voltage end of the secondary coil is electrically connected to a dummy coil, which is then electrically connected to a terminal plate. A high voltage connector configured for connection to a spark plug is then connected to the terminal plate. Oosuka et al. disclose the contention that since the secondary coil and the terminal plate are electrically connected through not a single connection but rather through the dummy coil, the surface area of the electrically connected portion between the secondary coil and the terminal plate is enlarged so as to avoid the concentration of electrical field. However, Oosuka et al. still disclose that the high voltage end of the dummy coil is electrically connected to the terminal plate by fusing or soldering. Additionally, the secondary winding wire as it leaves the winding bay still presents a relatively thin profile, wherein a high electric field is maintained. Accordingly, it is believed that the same problems described above continue to exist in the design of Oosuka et al.
Accordingly, there is a need for an improved ignition apparatus that minimizes or eliminates one or more of the problems as set forth above.
SUMMARY OF THE INVENTION
An object of the present invention is to solve one or more of the problems as set forth above. An ignition apparatus according to the present invention overcomes shortcomings of conventional ignition apparatus by including an electrically conductive cup absent of sharp edges, burrs, or the like, which makes contact with a portion of a high voltage terminal. The cup also surrounds the high voltage terminal and the secondary winding wire as it exits the winding bay (i.e., it extends, in an axial direction, up to a lower winding flange). Because the cup is at the same voltage potential as the high voltage terminal, there will not be an electric field concentration in and around the area of the high voltage terminal. Additionally, since the cup extends up to the winding flange, the secondary connection wire is also surrounded, reducing the electric field in that region. The reduction in electric field concentration reduces or eliminates formation of dendrites which, as described in the Background, may over time result in ignition coil failures.
An ignition apparatus according to the present invention comprises a central core having a main axis, and primary and secondary windings outwardly of the central core. The secondary winding is wound on a secondary winding spool having a winding surface and at least one flange. The flange is provided to cooperate with the winding surface to receive the secondary winding. A high voltage end of the secondary winding is connected to a high voltage terminal located away from the winding surface. According to the invention, a cup formed of metal material engages the high voltage terminal on an inner surface thereof. The cup is configured to be contacted by a connector assembly that is itself suitable for connection to a spark plug. The cup surrounds the HV terminal, and, significantly, extends axially up to the winding flange also surrounding the secondary winding wire as it exits the winding surface. The cup being free of sharp edges and the like, as well as surrounding the secondary winding wire, reduces electrical field concentrations.
A method of making an ignition apparatus including the aforementioned conductive cup is also presented.


REFERENCES:
patent: 5714922 (1998-02-01), Suzuki et al.
patent: 6023215 (2000-02-01), Sakamaki et al.
patent: 6094121 (2000-07-01), Sakamaki et al.
patent: 6208231 (2001-03-01), Oosuka et al.
patent: 0837481 (1998-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ignition apparatus having feature for shielding the HV terminal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ignition apparatus having feature for shielding the HV terminal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ignition apparatus having feature for shielding the HV terminal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3248401

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.