Identification of genes altered in multiple myeloma

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S069100, C435S320100, C435S348000, C435S410000, C435S243000, C536S023100, C536S023500, C536S023520

Reexamination Certificate

active

06245562

ABSTRACT:

BACKGROUND OF THE INVENTION
Throughout this application, various references are referred to within parentheses. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full bibliographic citation for these references may be found at the end of this application, preceding the claims.
Multiple myeloma (MM) is an incurable B cell tumor affecting B cell end-stage differentiation. Clinically, the course of MM is similar to end-stage plasma cell leukemia (PCL), i.e., there is an uncontrollable proliferation of myeloma cells accompanied by numerous complications, including hyperviscosity syndromes, hypercalcemia, infections, multiple bone fractures, and organ failure.
Non-random chromosomal translocation is known to play a crucial role in the tumorigenesis of hematologic malignancies (1). In B-cell lymphomas, many important proto-oncogenes deregulated by juxtaposition to immunoglobulin (Ig) gene locus have been identified. Each proto-oncogene is associated with a specific subtype of lymphoma, such as c-MYC in Burkitt's lymphoma, Cyclin DI IBCLI in mantle cell lymphoma, BCL-2 in follicular lymphoma and BCL-6 in diffuse large cell lymphoma (2-8). In contrast, little is known about molecular alterations of human MM/PCL, due to the difficulty in cytogenetic analysis. However, previous cytogenetic reports have shown a 14q+ chromosome, suggesting the existence of a chromosomal translocation involving the Ig heavy chain (IgH) locus, is observed in 20~30% of the MM/PCL cases and it is the most frequent consistent abnormality (9-12). Even in such cases, most cytogenetic data have failed to identify donor chromosomes other than 11q13, 8q24, and 18q21, where proto-oncogenes Cyclin DIIBCL-IIPRADI, c-MYC and BCL-2 are located, respectively. Among them, the 11q13 locus has been demonstrated to be involved in nearly 5~10% of the cases and also in 62% of the established cell lines (13). The t(11;14) (q13;q32) translocation is also accompanied by a corresponding overexpression of the Cyclin Dl gene, which raises a strong possibility of the involvement of this gene, although the breakpoints at 11q13 do not cluster like those of the lymphoma cases (14-16). Recent advances in fluorescence in situ hybridization (FISH) have made it possible to clarify both the frequency of the 14q+ chromosomes and the partner chromosomes of the IgH loci. One such report revealed an intriguing result, i.e., that numerous chromosomal loci are able to translocate to IgH locus, including 6p21, 1q21, 3p11, 7q11, 11q23 (17). This has prompted a search for the proto-oncogenes deregulated by the regulatory elements of the IgH gene for a further understanding of the molecular mechanisms of MM/PCL. In the present study, one candidate proto-oncogene, MUM1 (multiple myeloma oncogene 1), was found juxtaposed to the IgH gene as a result of t(6;14)(p25; q32) translocation in human myeloma cell line, SKMM-1. Over expression of the MUM1 mRNA was observed in this cell line. A second gene, called MUM-2 was found translocated in proximity to the IgH gene on chromosome 14q32 in human myeloma cell line, U-266.
The method of analysis of 14q+ chromosomal translocations and identification of the genes altered in multiple myeloma of this invention are useful since 1) no method is currently available to determine the chromosomal sequences involved in 14q+ translocations, the most important cytogenetic lesions associated with MM pathogenesis; 2) no specific gene lesion is currently known for MM; 3) no diagnostic method based on gene/DNA lesion is currently available for MM and 4) there are no therapeutic approaches aimed at counteracting the action of abnormal gene products in MM.
SUMMARY OF THE INVENTION
This invention provides a method of determining a chromosomal breakpoint in a subject suffering from multiple myeloma which comprises steps of: (a) obtaining a DNA sample from the subject suffering from multiple myeloma; (b) determining whether there is J and C disjunction in the immunoglobulin heavy chain gene in the obtained DNA sample; (c) obtaining a genomic library having clones which contain genomic DNA fragments from the DNA sample which shows positive J and C disjunction; (d) selecting and isolating clones of the obtained library which show positive hybridization with a probe which is capable of specifically hybridizing with the C but not the J region of the immunoglobulin heavy chain gene; (e) preparing fluorescent probes from the genomic DNA fragments of the isolated clones from step (d); (f) hybridizing said fluorescent probes with metaphase chromosomes; and (g) determining the identity of the chromosomes which are capable of hybridizing to said fluorescent probes, wherein the identification of a chromosome other than chromosome 14 would indicate that the chromosomal breakpoint is between chromosome 14 and the identified chromosome, thereby determining a chromosomal breakpoint in a subject suffering from multiple myeloma.
This invention provides a method to identify a gene other than the immunoglobulin gene which is located in chromosome 14, altered by a chromosomal breakpoint detected in a subject suffering from multiple myeloma which comprises steps of: a) selecting a probe having a sequence of a chromosome other than chromosome 14, identified at the chromosomal breakpoint detected in a subject suffering fron multiple myeloma, wherein said probe is capable of hybridizing to the unique sequence of the gene other than the immunoglobulin gene altered by a chromosomal breakpoint detected in a subject suffering from multiple myeloma; b) contacting said probe with mRNA isolated from a cell under conditions permitting formation of a complex between said probe and the mRNA; c) isolating the complex resulting from step (b); d) determining the sequence of the mRNA in the isolated complex, thereby determining the identity of the gene.
This invention provides a gene designated MUM-1. This invention provides a gene designated MUM-2. This invention provides an isolated nucleic acid molecule encoding a MUM protein. This invention provides a DNA encoding a MUM protein. This invention provides a cDNA encoding a MUM protein. This invention provides a genomic DNA molecule encoding a MUM protein. This invention provides a RNA molecule encoding a MUM protein. This invention provides an isolated nucleic acid molecule encoding a human MUM-1 protein. This invention provides an isolated nucleic acid molecule encoding a human MUM-2 protein. This invention provides an isolated nucleic acid molecule encoding a MUM protein operatively linked to a promoter of RNA transcription. This invention provides a vector comprising the an isolated cDNA encoding a MUM protein. This invention provides a vector which comprises an isolated cDNA encoding a MUM protein. This invention provides a vector which comprises an isolated cDNA encoding a MUM protein, wherein the vector is a plasmid. This invention provides a host cell for the vector which comprises an isolated cDNA encoding a MUM protein.
This invention provides a nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a unique sequence included within the sequence of a nucleic acid molecule encoding a MUM protein. This invention provides a nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides which is complementary to a sequence of the isolated nucleic acid molecule encoding a MUM protein.
This invention provides a nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides which is complementary to a sequence of the isolated nucleic acid molecule encoding a MUM protein which is linked to a nucleic acid sequence complementary to a sequence of a nucleic acid molecule of human chromosome 14.
This invention provides a nucleic acid probe comprising a the sequence of a nucleic acid molecule encoding a MUM-1 protein which is linked at a specific break point t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Identification of genes altered in multiple myeloma does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Identification of genes altered in multiple myeloma, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Identification of genes altered in multiple myeloma will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2539160

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.